
xPC Target™ 4
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
xPC Target™ User’s Guide
© COPYRIGHT 1999–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 1999 First printing New for Version 1 (Release 11.1)
November 2000 Online only Revised for Version 1.1 (Release 12)
June 2001 Online only Revised for Version 1.2 (Release 12.1)
September 2001 Online only Revised for Version 1.3 (Release 12.1+)
July 2002 Online only Revised for Version 2 (Release 13)
June 2004 Online only Revised for Version 2.5 (Release 14)
August 2004 Online only Revised for Version 2.6 (Release 14+)
October 2004 Online only Revised for Version 2.6.1 (Release 14SP1)
November 2004 Online only Revised for Version 2.7 (Release 14SP1+)
March 2005 Online only Revised for Version 2.7.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.8 (Release 14SP3)
March 2006 Online only Revised for Version 2.9 (Release 2006a)
May 2006 Online only Revised for Version 3.0 (Release 2006a+)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 4.0 (Release 2008b)

Contents

Target and Scope Objects

1
Target Objects . 1-2
What Is a Target Object? . 1-2

Scope Objects . 1-3
What Is a Scope Object? . 1-3
Scope Object Types . 1-4

Targets and Scopes in the MATLAB Interface

2
Working with Target Objects . 2-2
Accessing Help for Target Objects . 2-2
Creating Target Objects . 2-2
Deleting Target Objects . 2-3
Displaying Target Object Properties 2-4
Setting Target Object Properties from the Host PC 2-4
Getting the Value of a Target Object Property 2-5
Using the Method Syntax with Target Objects 2-6

Working with Scope Objects . 2-7
Accessing Help for Scope Objects . 2-7
Displaying Scope Object Properties for a Single Scope 2-7
Displaying Scope Object Properties for All Scopes 2-8
Setting the Value of a Scope Property 2-9
Getting the Value of a Scope Property 2-10
Using the Method Syntax with Scope Objects 2-11
Acquiring Signal Data with Scopes of Type File 2-11
Advanced Data Acquisition Topics . 2-12

v

Signals and Parameters

3
Monitoring Signals . 3-2
Introduction . 3-2
Signal Monitoring with xPC Target Explorer 3-2
Signal Monitoring with the MATLAB Interface 3-9
Monitoring Stateflow States . 3-10

Signal Tracing . 3-15
Introduction . 3-15
Signal Tracing with xPC Target Explorer 3-15
Signal Tracing with the MATLAB Interface 3-36
Signal Tracing with xPC Target Scope Blocks 3-46
Signal Tracing with Simulink External Mode 3-48
Signal Tracing with a Web Browser 3-52

Signal Logging . 3-54
Introduction . 3-54
Signal Logging with xPC Target Explorer 3-54
Signal Logging in the MATLAB Interface 3-57
Signal Logging with a Web Browser 3-61

Parameter Tuning and Inlining Parameters 3-63
Introduction . 3-63
Parameter Tuning with xPC Target Explorer 3-64
Parameter Tuning with the MATLAB Interface 3-67
Parameter Tuning with Simulink External Mode 3-70
Parameter Tuning with a Web Browser 3-73
Saving and Reloading Application Parameters with the
MATLAB Interface . 3-73

Inlined Parameters . 3-76

Booting from a DOS Device

4
DOSLoader Mode . 4-2
Introduction . 4-2

vi Contents

DOSLoader Mode Overview . 4-2
Restrictions . 4-3
Updating the xPC Target Environment 4-4
Creating a DOS System Disk . 4-6

DOSLoader Target Setup . 4-7
Introduction . 4-7
Updating Environment Properties and Creating a Boot
Disk . 4-7

Copying the Kernel to Flash Memory 4-9
Creating a Target Application for DOSLoader Mode 4-11
Creating DOSLoader Files with a Command-Line
Interface . 4-11

Embedded Option

5
Introduction . 5-2

xPC Target Embedded Option Modes 5-3
Introduction . 5-3
Standalone Mode Overview . 5-4
Restrictions . 5-6

Embedded Option Setup . 5-7
Updating the xPC Target Environment 5-7
Creating a DOS System Disk . 5-9

Stand-Alone Target Setup . 5-10
Before You Start . 5-10
Updating Environment Properties . 5-11
Creating a Kernel/Target Application 5-11
Copying the Kernel/Target Application to the Target PC
Flash Disk . 5-12

vii

Software Environment and Demos
6

Using Environment Properties and Functions 6-2
Introduction . 6-2
Getting a List of Environment Properties for Default Target
PCs . 6-2

Changing Environment Properties with xPC Target
Explorer . 6-3

Changing Environment Properties with a Command-Line
Interface for Default Target PCs 6-7

xPC Target Demos . 6-9
Introduction . 6-9
To Locate or Edit a Demo Script . 6-11

Working with Target PC Environments

7
Target Environment Command-Line Interface 7-2
Creating Target PC Environment Object Containers 7-2
Displaying Target PC Environment Object Property
Values . 7-2

Setting Target PC Environment Collection Object
Properties . 7-3

Adding Target PC Environment Collection Objects 7-4
Removing Target PC Environment Collection Objects 7-4
Getting Target PC Environment Object Names 7-4
Changing Target PC Environment Object Defaults 7-5
Working with Particular Target PC Object
Environments . 7-5

Using the Target PC Command-Line Interface

8
Target PC Command-Line Interface 8-2

viii Contents

Introduction . 8-2
Using Target Application Methods on the Target PC 8-2
Manipulating Target Object Properties from the Target
PC . 8-3

Manipulating Scope Objects from the Target PC 8-4
Manipulating Scope Object Properties from the Target
PC . 8-5

Aliasing with Variable Commands on the Target PC 8-6

Working with Target PC Files and File Systems

9
Introduction . 9-2

FTP and File System Objects . 9-4

Using xpctarget.ftp Objects . 9-5
Overview . 9-5
Accessing Files on a Specific Target PC 9-6
Listing the Contents of the Target PC Directory 9-7
Retrieving a File from the Target PC to the Host PC 9-7
Copying a File from the Host PC to the Target PC 9-8

Using xpctarget.fs Objects . 9-9
Overview . 9-9
Accessing File Systems from a Specific Target PC 9-10
Retrieving the Contents of a File from the Target PC to the
Host PC . 9-11

Removing a File from the Target PC 9-14
Getting a List of Open Files on the Target PC 9-14
Getting Information about a File on the Target PC 9-15
Getting Information about a Disk on the Target PC 9-16

ix

Graphical User Interfaces

10
xPC Target Interface Blocks to Simulink Models 10-2
Introduction . 10-2
Simulink User Interface Model . 10-2
Creating a Custom Graphical Interface 10-3
To xPC Target Block . 10-4
From xPC Target Block . 10-5
Creating a Target Application Model 10-6
Marking Block Parameters . 10-7
Marking Block Signals . 10-9

xPC Target Web Browser Interface

11
Web Browser Interface . 11-2
Introduction . 11-2
Connecting the Web Interface Through TCP/IP 11-2
Connecting the Web Interface Through RS-232 11-3
Using the Main Pane . 11-7
Changing WWW Properties . 11-9
Viewing Signals with a Web Browser 11-10
Viewing Parameters with a Web Browser 11-11
Changing Access Levels to the Web Browser 11-11

Interrupts Versus Polling

12
Polling Mode . 12-2
Introduction . 12-2
xPC Target Kernel Polling Mode . 12-2
Interrupt Mode . 12-3
Polling Mode . 12-4
Setting the Polling Mode . 12-7
Restrictions Introduced by Polling Mode 12-10

x Contents

Controlling the Target Application 12-13
Polling Mode Performance . 12-14

Incorporating Fortran Code into the xPC Target
Environment

13
Before You Start . 13-2
Introduction . 13-2
Simulink Demos Directory . 13-2
Prerequisites . 13-3
Steps to Incorporate Fortran in the Simulink Software for
xPC Target . 13-3

Step-by-Step Example of Fortran and xPC Target 13-5
In This Example . 13-5
Creating an xPC Target Atmosphere Model for Fortran . . 13-5
Compiling Fortran Files . 13-7
Creating a C-MEX Wrapper S-Function 13-8
Compiling and Linking the Wrapper S-Function 13-12
Validating the Fortran Code and Wrapper S-Function . . . 13-14
Preparing the Model for the xPC Target Application
Build . 13-15

Building and Running the xPC Target Application 13-16

Troubleshooting

14
Overview . 14-2

BIOS Settings . 14-3

Booting Issues . 14-4
Is Your Host PC MATLAB Interface Halted? 14-4
Is Your Target PC Unable to Boot? 14-4
Is the Target PC Halted? . 14-5

xi

Communications . 14-6
Is There Communication Between Your PCs? 14-6
Why Does the xPC Target System Lose Connection with the
Host PC When Downloading Some Models? 14-7

How Can I Diagnose Network Problems with the xPC
Target System? . 14-9

Installation, Configuration, and Build
Troubleshooting . 14-10
Troubleshooting xpctest Results . 14-10
Troubleshooting Build Issues . 14-17

General xPC Target Troubleshooting 14-19
General I/O Troubleshooting Guidelines 14-19
Can I View the Contents of the Target PC Display on the
Host PC? . 14-20

Why Do Attempts to Run My Model Cause CPU Overload
Messages on the Target PC? . 14-20

How Can I Obtain PCI Board Information for My xPC
Target System? . 14-25

What Sample Time Can I Expect from the xPC Target
Software? . 14-26

Why Is My Requested xPC Target Sample Time Different
from the Measured Sample Time? 14-26

Why Did I Get Error -10: Invalid File ID on the Target
PC? . 14-28

Can I Write Custom xPC Target Device Drivers? 14-28
Can I Create a Stand-Alone xPC Target Application to
Interact with a Target Application? 14-29

Can Signal Outputs from Virtual Blocks Be Tagged? 14-29
Why Has the Stop Time Changed? . 14-30
Why Do I Get a File System Disabled Error? 14-30
Can the Target PC Hard Drive Contain Multiple
Partitions? . 14-31

Why Does the getparamid Function Return Nothing? 14-31
How Do I Handle Register Rollover for xPC Target Encoder
Blocks? . 14-31

Getting Updated xPC Target Releases and Help 14-33
How to Get Updated xPC Target Releases 14-33
Are You Working with a New xPC Target Release? 14-33
Refer to the MathWorks Support Web Site 14-34
Refer to the Documentation . 14-34

xii Contents

Target PC Command-Line Interface Reference

15
Target PC Commands . 15-2
Introduction . 15-2
Target Object Methods . 15-2
Target Object Property Commands 15-3
Scope Object Methods . 15-5
Scope Object Property Commands . 15-6
Aliasing with Variable Commands 15-8

Function Reference
16

Software Environment . 16-2

GUI . 16-3

Test . 16-4

Target Application Objects . 16-5

Scope Objects . 16-7

File and File System Objects . 16-8
Directories . 16-8
FTP . 16-8
File System . 16-8

xPC Target Environment Collection Object 16-10

xPC Target Utilities . 16-11

xiii

Functions
17

Index

xiv Contents

1

Target and Scope Objects

Before you can work with xPC Target™ target and scope objects, you should
understand the concept of target and scope objects.

• “Target Objects” on page 1-2

• “Scope Objects” on page 1-3

1 Target and Scope Objects

Target Objects

What Is a Target Object?
The xPC Target software uses a target object (of class xpctarget.xpc) to
represent the target kernel and your target application. Use target object
functions to run and control real-time applications on the target PC with
scope objects to collect signal data.

See “Function Reference” and “Functions” for a reference of the target
functions.

An understanding of the target object properties and methods will help you to
control and test your application on the target PC.

A target object on the host PC represents the interface to a target application
and the kernel on the target PC. You use target objects to run and control
the target application.

When you change a target object property on the host PC, information is
exchanged with the target PC and the target application.

To create a target object,

1 Build a target application. The xPC Target software creates a target object
during the build process.

2 Use the target object constructor function xpc. In the MATLAB® Command
window, type tg = xpctarget.xpc.

Target objects are of class xpctarget.xpc. A target object has associated
properties and methods specific to that object.

1-2

Scope Objects

Scope Objects

In this section...

“What Is a Scope Object?” on page 1-3
“Scope Object Types” on page 1-4

What Is a Scope Object?
The xPC Target software uses scope objects to represent scopes on the target
PC. Use scope object functions to view and collect signal data.

See “Function Reference” and “Functions” for a reference of the scope
functions.

The xPC Target software uses scopes and scope objects as an alternative to
using Simulink® scopes and external mode. A scope can exist as part of a
Simulink model system or outside a model system.

• A scope that is part of a Simulink model system is a scope block. You add
an xPC Target scope block to the model, build an application from that
model, and download that application to the target PC.

• A scope that is outside a model is not a scope block. For example, if you
create a scope with the addscope method, that scope is not part of a
model system. You add this scope to the model after the model has been
downloaded and initialized.

This difference affects when and how the scope executes to acquire data.

Scope blocks inherit sample times. A scope block in the root model or a normal
subsystem executes at the sample time of its input signals. A scope block in a
conditionally executed (triggered/enabled) subsystem executes whenever the
containing subsystem executes. Note that in the latter case, the scope might
acquire samples at irregular intervals.

A scope that is not part of a model always executes at the base sample time
of the model. Thus, it might acquire repeated samples. For example, if the
model base sample time is 0.001, and you add to the scope a signal whose

1-3

1 Target and Scope Objects

sample time is 0.005, the scope will acquire five identical samples for this
signal, and then the next five identical samples, and so on.

Understanding the structure of scope objects will help you to use the MATLAB
command-line interface to view and collect signal data.

Refer to Chapter 1, “Target and Scope Objects” for a description of how to use
these objects, properties, and methods.

A scope object on the host PC represents a scope on the target PC. You use
scope objects to observe the signals from your target application during a
real-time run or analyze the data after the run is finished.

To create a scope object,

• Add an xPC Target scope block to your Simulink model, build the model to
create a scope, and then use the target object method getscope to create a
scope object.

• Use the target object method addscope to create a scope, create a scope
object, and assign the scope properties to the scope object.

A scope object has associated properties and methods specific to that object.

To read about scope object types, see “Scope Object Types” on page 1-4.

Scope Object Types
You can create scopes of type target, host, or file. Upon creation, The
xPC Target software assigns the appropriate scope object data type for the
scope type:

• xpctarget.xpcsctg for scopes of type target

• xpctarget.xpcschost for scopes of type host

• xpctarget.xpcfs for scopes of type file

• xpctarget.xpcsc encompasses the object properties common to all the
scope object data types. The xPC Target software creates this object if you
create multiple scopes of different types for one model and combine those
scopes, for example, into a scope vector.

1-4

Scope Objects

Each scope object type has a group of object properties particular to that
object type.

1-5

1 Target and Scope Objects

The xpcsctg scope object of type target has the following object properties:

• Grid

• Mode

• YLimit

The xpcschost scope object of type host has the following object properties:

• Data

• Time

The xpcfs scope object of type file has the following object properties:

• AutoRestart

• Filename

• Mode

• WriteSize

The xpcsc scope object has the following object properties. The other scope
objects have these properties in common:

• Application

• Decimation

• NumPrePostSamples

• NumSamples

• ScopeID

• Status

• TriggerLevel

• TriggerMode

• TriggerSample

• TriggerScope

• TriggerSignal

1-6

Scope Objects

• TriggerSlope

• Type

See the scope object function get (scope object) for a description of these
object properties.

1-7

1 Target and Scope Objects

1-8

2

Targets and Scopes in the
MATLAB Interface

You can work with xPC Target target and scope objects through the MATLAB
interface (MATLAB Command Window), the target PC command line, a
Web browser, or an xPC Target API. This chapter describes how to use the
MATLAB interface to work with the target and scope objects in the following
sections. See Chapter 8, “Using the Target PC Command-Line Interface” for a
description of the target PC command-line interface.

• “Working with Target Objects” on page 2-2

• “Working with Scope Objects” on page 2-7

2 Targets and Scopes in the MATLAB® Interface

Working with Target Objects

In this section...

“Accessing Help for Target Objects” on page 2-2
“Creating Target Objects” on page 2-2
“Deleting Target Objects” on page 2-3
“Displaying Target Object Properties” on page 2-4
“Setting Target Object Properties from the Host PC” on page 2-4
“Getting the Value of a Target Object Property” on page 2-5
“Using the Method Syntax with Target Objects” on page 2-6

Accessing Help for Target Objects
See “Function Reference” and “Functions” for a reference of the target object
functions.

The target application object methods allow you to control a target application
on the target PC from the host PC. You enter target application object
methods in the MATLAB window on the host PC or use M-file scripts. To
access the M-file help for these methods, use the syntax

help xpctarget.xpc/method_name

If you want to control the target application from the target PC, use target PC
commands. See Chapter 8, “Using the Target PC Command-Line Interface”.

Creating Target Objects
To create a target object, perform the following

1 Build a target application. the xPC Target software creates a target object
during the build process.

2 To create a single target object, or to create multiple target objects in your
system, use the target object constructor function xpc (see xpctarget.xpc)
as follows. For example, the following creates a target object connected

2-2

Working with Target Objects

to the host through an RS-232 connection. In the MATLAB Command
Window, type

tg = xpctarget.xpc('rs232', 'COM1', '115200')

The resulting target object is tg.

3 To check a connection between a host and a target, use the target function
targetping. For example,

tg.targetping

Note To ensure that you always know which target PC is associated with
your target object, you should always use this method to create target
objects.

4 To create a single target object, or to create the first of many targets in
your system, use the target object constructor function xpctarget.xpc as
follows. In the MATLAB Command Window, type

tg = xpctarget.xpc

The resulting target object is tg.

Note If you choose to use this syntax to create a target object, you should use
the xPC Target software Explorer to configure your target PC. This ensures
that command-line interactions know the correct target PC to work with.

Deleting Target Objects
To delete a target object, use the target object destructor function delete . In
the MATLAB window, type

tg.delete

If there are any scopes, file system, or FTP objects still associated with the
target, this function removes all those scope objects as well.

2-3

2 Targets and Scopes in the MATLAB® Interface

Displaying Target Object Properties
You might want to list the target object properties to monitor a target
application. The properties include the execution time and the average task
execution time.

After you build a target application and target object from a Simulink model,
you can list the target object properties. This procedure uses the default
target object name tg as an example.

1 In the MATLAB window, type

tg

The current target application properties are uploaded to the host PC, and
MATLAB displays a list of the target object properties with the updated
values.

Note that the target object properties for TimeLog, StateLog, OutputLog,
and TETLog are not updated at this time.

2 Type

+tg

The Status property changes from stopped to running, and the log
properties change to Acquiring.

For a list of target object properties with a description, see the target object
function get (target application object).

Setting Target Object Properties from the Host PC
You can change a target object property by using the xPC Target software set
method or the dot notation on the host PC. (See “User Interaction” in the xPC
Target Getting Started Guide guide for limitations on target property changes
to sample times.)

With the xPC Target software you can use either a function syntax or an
object property syntax to change the target object properties. The syntax
set(target_object, property_name,new_property_value) can be
replaced by

2-4

Working with Target Objects

target_object.property_name = new_property_value

For example, to change the stop time mode for the target object tg,

• In the MATLAB window, type

tg.stoptime = 1000

• Alternatively, you can type

set(tg, 'stoptime', 1000)

When you change a target object property, the new property value is
downloaded to the target PC. The xPC Target kernel then receives the
information and changes the behavior of the target application.

To get a list of the writable properties, type set(target_object). The build
process assigns the default name of the target object to tg.

Getting the Value of a Target Object Property
You can list a property value in the MATLAB window or assign that value
to a MATLAB variable. With the xPC Target software you can use either a
function syntax or an object property syntax.

The syntax get(target_object, property_name) can be replaced by

target_object.property_name

For example, to access the stop time,

• In the MATLAB window, type

endrun = tg.stoptime

• Alternatively, you can type

endrun = get(tg,'stoptime') or tg.get('stoptime')

To get a list of readable properties, type target_object. Without assignment
to a variable, the property values are listed in the MATLAB window.

2-5

2 Targets and Scopes in the MATLAB® Interface

Signals are not target object properties. To get the value of the Integrator1
signal from the model xpcosc,

• In the MATLAB window, type

outputvalue = getsignal (tg,0)

where 0 is the signal index.

• Alternatively, you can type

tg.getsignal(0)

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name as long as the characters you do type are unique for the property.

Using the Method Syntax with Target Objects
Use the method syntax to run a target object method. The syntax
method_name(target_object, argument_list) can be replaced with

target_object.method_name(argument_list)

Unlike properties, for which partial but unambiguous names are permitted,
you must enter method names in full, and in lowercase. For example, to add a
scope of type target with a scope index of 1,

• In the MATLAB window, type

tg.addscope('target',1)

• Alternatively, you can type

addscope(tg, 'target', 1)

2-6

Working with Scope Objects

Working with Scope Objects

In this section...

“Accessing Help for Scope Objects” on page 2-7
“Displaying Scope Object Properties for a Single Scope” on page 2-7
“Displaying Scope Object Properties for All Scopes” on page 2-8
“Setting the Value of a Scope Property” on page 2-9
“Getting the Value of a Scope Property” on page 2-10
“Using the Method Syntax with Scope Objects” on page 2-11
“Acquiring Signal Data with Scopes of Type File” on page 2-11
“Advanced Data Acquisition Topics” on page 2-12

Accessing Help for Scope Objects
See “Function Reference” and “Functions” for a reference of the scope object
functions.

The scope object methods allow you to control scopes on your target PC.

If you want to control the target application from the target PC, use target PC
commands. See Chapter 8, “Using the Target PC Command-Line Interface”.

Displaying Scope Object Properties for a Single Scope
To list the properties of a single scope object, sc1,

1 In the MATLAB window, type

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)

MATLAB creates the scope object sc1 from a previously created scope.

2 Type

sc1

2-7

2 Targets and Scopes in the MATLAB® Interface

The current scope properties are uploaded to the host PC, and then
MATLAB displays a list of the scope object properties with the updated
values. Because sc1 is a vector with a single element, you could also type
sc1(1) or sc1([1]).

Note Only scopes with type host store data in the properties
scope_object.Time and scope_object.Data.

For a list of target object properties with a description, see the target function
get (target application object).

Displaying Scope Object Properties for All Scopes
To list the properties of all scope objects associated with the target object tg,

• In the MATLAB window, type

getscope(tg) or tg.getscope

MATLAB displays a list of all scope objects associated with the target
object.

• Alternatively, type

allscopes = getscope(tg)

or

allscopes = tg.getscope

The current scope properties are uploaded to the host PC, and then
MATLAB displays a list of all the scope object properties with the updated
values. To list some of the scopes, use the vector index. For example, to list
the first and third scopes, type allscopes([1,3]).

For a list of target object properties with a description, see the target function
get (target application object).

2-8

Working with Scope Objects

Setting the Value of a Scope Property
With the xPC Target software you can use either a function syntax or an
object property syntax. The syntax set(scope_object, property_name,
new_property_value) can be replaced by

scope_object(index_vector).property_name = new_property_value

For example, to change the trigger mode for the scope object sc1,

• In the MATLAB window, type

sc1.triggermode = 'signal'

• Alternatively, you can type

set(sc1,'triggermode', 'signal')

or

sc1.set('triggermode', 'signal')

Note that you cannot use dot notation to set vector object properties. To assign
properties to a vector of scopes, use the set method. For example, assume
you have a variable sc12 for two scopes, 1 and 2. To set the NumSamples
property of these scopes to 300,

1 In the MATLAB window, type

set(sc12,'NumSamples',300)

To get a list of the writable properties, type set(scope_object).

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name as long as the characters you do type are unique for the property.

2-9

2 Targets and Scopes in the MATLAB® Interface

Getting the Value of a Scope Property
You can list a property value in the MATLAB window or assign that value
to a MATLAB variable. With the xPC Target software you can use either a
function syntax or an object property syntax.

The syntax get(scope_object_vector, property_name) can be replaced by

scope_object_vector(index_vector).property_name

For example, to assign the number of samples from the scope object sc1,

• In the MATLAB window, type

numsamples = sc1.NumSamples

• Alternatively, you can type

numsamples = get(sc1,'NumSamples')

or

sc1.get(NumSamples)

Note that you cannot use dot notation to get the values of vector object
properties. To get properties of a vector of scopes, use the get method. For
example, assume you have two scopes, 1 and 2, assigned to the variable sc12.

To get the value of NumSamples for these scopes, in the MATLAB window, type

get(sc12,'NumSamples')

You get a result like the following:

ans =
[300]
[300]

To get a list of readable properties, type scope_object. The property values
are listed in the MATLAB window.

2-10

Working with Scope Objects

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name as long as the characters you do type are unique for the property.

Using the Method Syntax with Scope Objects
Use the method syntax to run a scope object method. The syntax
method_name(scope_object_vector, argument_list) can be replaced
with either

• scope_object.method_name(argument_list)

• scope_object_vector(index_vector).method_name(argument_list)

Unlike properties, for which partial but unambiguous names are permitted,
enter method names in full, and in lowercase. For example, to add signals to
the first scope in a vector of all scopes,

• In the MATLAB window, type

allscopes(1).addsignal([0,1])

• Alternatively, you can type

addsignal(allscopes(1), [0,1])

Acquiring Signal Data with Scopes of Type File
You can acquire signal data into a file on the target PC. To do so, you add
a scope of type file to the application. After you build an application and
download it to the target PC, you can add a scope of type file to that
application.

For example, to add a scope of type file named sc to the application, and
to add signal 4 to that scope,

1 In the MATLAB window, type

sc=tg.addscope('file')

The xPC Target software creates a scope of type file for the application.

2-11

2 Targets and Scopes in the MATLAB® Interface

2 Type

sc.addsignal(4)

The xPC Target software adds signal 4 to the scope of type file. When you
start the scope and application, the scope saves the signal data for signal 4 to
a file, by default named C:\data.dat.

See “Scope of Type File” on page 3-47 in Chapter 3, “Signals and Parameters”
for a description of with scopes of type file.

Advanced Data Acquisition Topics
The moment that an xPC Target scope begins to acquire data is user
configurable. You can have xPC Target scopes acquire data right away, or
define triggers for scopes such that the xPC Target scopes wait until they
are triggered to acquire data. You can configure xPC Target scopes to start
acquiring data when the following scope trigger conditions are met. These
are known as trigger modes.

• Freerun— Starts to acquire data as soon as the scope is started (default)

• Software — Starts to acquire data in response to a user request. You
generate a user request when you call the scope method trigger or the
scope function xPCScSoftwareTrigger.

• Signal — Starts to acquire data when a particular signal has crossed a
preset level

• Scope— Starts to acquire data based on when another (triggering) scope
starts

You can use several properties to further refine when a scope acquires data.
For example, if you set a scope to trigger on a signal (Signal trigger mode),
you can configure the scope to specify the following:

• The signal to trigger the scope (required)

• The trigger level that the signal must cross to trigger the scope to start
acquiring data

• Whether the scope should trigger on a rising signal, falling signal, or either
one

2-12

Working with Scope Objects

In the following topics, the trigger point is the sample during which the scope
trigger condition is satisfied. For signal triggering, the trigger point is the
sample during which the trigger signal passes through the trigger level. At
the trigger point, the scope acquires the first sample. By default, scopes start
acquiring data from the trigger point onwards. You can modify this behavior
using the pre- and posttriggering.

• Pretriggering — Starts to acquire data N moments before a trigger occurs

• Posttriggering — Starts to acquire data N moments after a trigger occurs

The NumPrePostSamples scope property controls the pre- and posttriggering
operation. This property specifies the number of samples to be collected
before or after a trigger event.

• If NumPrePostSamples is a negative number, the scope is in pretriggering
mode, where it starts collecting samples before the trigger event.

• If NumPrePostSamples is a positive number, the scope is in a posttriggering
mode, where it starts collecting samples after the trigger event.

The following topics describe two examples of acquiring data:

• “Triggering One Scope with Another Scope to Acquire Data” on page 2-13
— Describes a configuration of one scope to trigger another using the
concept of pre- and posttriggering

• “Acquiring Gap-Free Data Using Two Scopes” on page 2-16 — Describes
how to apply the concept of triggering one scope with another to acquire
gap-free data

Triggering One Scope with Another Scope to Acquire Data
This section describes the concept of triggering one scope with another to
acquire data. The description uses actual scope objects and properties to
describe triggers.

The ability to have one scope trigger another, and to delay retrieving data
from the second after a trigger event on the first, is most useful when data
acquisition for the second scope is triggered after data acquisition for the
first scope is complete. In the following explanation, Scope 2 is triggered
by Scope 1.

2-13

2 Targets and Scopes in the MATLAB® Interface

• Assume two scopes objects are configured as a vector with the command

sc = tg.addscope('host', [1 2]);

• For Scope 1, set the following values:

- sc(1).ScopeId = 1

- sc(1).NumSamples = N

- sc1.NumPrePostSamples = P

• For Scope 2, set the following values:

- sc(2).ScopeId = 2

- sc(2).TriggerMode = 'Scope'

- sc(2).TriggerScope =1

- sc(2).TriggerSample = range 0 to (N + P - 1)

In the figures below, TP is the trigger point or sample where a trigger event
occurs. Scope 1 begins acquiring data as described.

In the simplest case, where P = 0, Scope 1 acquires data right away.

2-14

Working with Scope Objects

Pretriggering (P<0) on page 2-15 illustrates the behavior if P, the value of
NumPrePostSamples, is negative. In this case, Scope 1 starts acquiring data
|P| samples before TP. Scope 2 begins to acquire data only after TP occurs.

Pretriggering (P<0)

Posttriggering (P>0) on page 2-15 illustrates the behavior if P, the value of
NumPrePostSamples, is positive. In this case, Scope 1 starts acquiring data
|P| samples after TP occurs.

Posttriggering (P>0)

2-15

2 Targets and Scopes in the MATLAB® Interface

Scope 1 triggers Scope 2 after the trigger event occurs. The following describes
some of the ways you can trigger Scope 2:

• sc(2).TriggerSample = 0— Causes Scope 2 to be triggered when Scope 1
is triggered. TP for both scopes as at the same sample.

• sc(2).TriggerSample = n > 0— Causes TP for Scope 2 to be n samples
after TP for Scope 1. Note that setting sc(2).TriggerSample to a value
larger than (N + P - 1) does not cause an error; it implies that Scope 2
will never trigger, since Scope 1 will never acquire more than (N + P -
1) samples after TP.

• sc(2).TriggerSample = 0 < n < (N + P) — Enables you to obtain
some of the functionality that is available with pre- or posttriggering. For
example, if you have the following Scope 1 and Scope 2 settings,

- Scope 1 has sc(1).NumPrePostSamples = 0 (no pre- or posttriggering)

- Scope 2 has sc(2).TriggerSample = 10

- Scope 2 has sc(2).NumPrePostSample = 0

The behavior displayed by Scope 2 is equivalent to having
sc(2).TriggerSample = 0 and sc(2).NumPrePostSamples = 10.

• sc(2).TriggerSample = -1 — Causes Scope 2 to start acquiring data
from the sample after Scope 1 stops acquiring.

Note The difference between setting TriggerSample = (N + P - 1),
where N and P are the parameters of the triggering scope (Scope 1) and
TriggerSample = -1 is that in the former case, the first sample of Scope 2
will be at the same time as the last sample of Scope 1, whereas in the latter,
the first sample of Scope 2 will be one sample after the last sample of Scope 1.
This means that in the former case both scopes acquire simultaneously for
one sample, and in the latter they will never simultaneously acquire.

Acquiring Gap-Free Data Using Two Scopes
With two scopes, you can acquire gap-free data. Gap-free data is data that two
scopes acquire consecutively, with no overlap. The first scope acquires data
up to N, then stops. The second scope begins to acquire data at N+1. This is
functionality that you cannot achieve through pre- or posttriggering.

2-16

Working with Scope Objects

Acquisition of Gap-Free Data on page 2-17 graphically illustrates how scopes
trigger one another. In this example, the TriggerMode property of Scope 1 is
set to 'Software'. This allows Scope 1 to be software triggered to acquire
data when it receives the command sc1.trigger.

Acquisition of Gap-Free Data

The following procedure describes how you can programmatically acquire
gap-free data with two scopes.

1 Ensure that you have already built and downloaded the Simulink model
xpcosc.mdl to the target PC.

2 In the MATLAB Command Window, assign tg to the target PC and set the
StopTime property to 1. For example,

tg=xpctarget.xpc
tg.StopTime = 1;

3 Add two scopes of type host to the target application. You can assign the
two scopes to a vector, sc, so that you can work with both scopes with one
command.

2-17

2 Targets and Scopes in the MATLAB® Interface

sc = tg.addscope('host', [1 2]);

4 Add the signals of interest (0 and 1) to both scopes.

addsignal(sc,[0 1]);

5 Set the NumSamples property for both scopes to 500 and the TriggerSample
property for both scopes to -1. With this property setting, each scope
triggers the next scope at the end of its 500 sample acquisition.

set(sc, 'NumSamples', 500, 'TriggerSample', -1)

6 Set the TriggerMode property for both scopes to 'Scope'. Set the
TriggerScope property such that each scope is triggered by the other.

set(sc, 'TriggerMode', 'Scope');
sc(1).TriggerScope = 2;
sc(2).TriggerScope = 1;

7 Set up storage for time, t, and signal, data acquisition.

t = [];
data = zeros(0, 2);

8 Start both scopes and the model.

start(sc);
start(tg);

Note that both scopes receive exactly the same signals, 0 and 1.

9 Trigger scope 1 to start acquiring data.

scNum = 1;
sc(scNum).trigger;

Setting scNum to 1 indicates that scope 1 will acquire data first.

10 Start acquiring data using the two scopes to double buffer the data.

while (1)
% Wait until this scope has finished acquiring 500 samples
% or the model stops (scope is interrupted).

2-18

Working with Scope Objects

while ~(strcmp(sc(scNum).Status, 'Finished') || ...
strcmp(sc(scNum).Status, 'Interrupted')), end

% Stop buffering data when the model stops.
if strcmp(tg.Status, 'stopped')

break
end
% Save the data.
t(end + 1 : end + 500) = sc(scNum).Time;
data(end + 1 : end + 500, :) = sc(scNum).Data;
% Restart this scope.
start(sc(scNum));
% Switch to the next scope.

%Shortcut for if(scNum==1) scNum=2;else scNum=1,end
scNum = 3 - scNum;
end

11 When done, remove the scopes.

% Remove the scopes we added.
remscope(tg,[1 2]);

The following is a complete code listing for the preceding double-buffering
data acquisition procedure. You can copy and paste this code into an M-file
and run it after you download the model (xpcosc.mdl) to the target PC. This
example assumes that the communication speed between the host and target
PC is fast enough to handle the number of samples and can acquire the full
data set before the next acquisition cycles starts. In a similar way, you can use
more than two scopes to implement a triple- or quadruple-buffering scheme.

% Assumes model xpcosc.mdl has been built and loaded on the target PC.

% Attach to the target PC and set StopTime to 1 sec.

tg = xpctarget.xpc;

tg.StopTime = 1;

% Add two host scopes.

sc = tg.addscope('host', [1 2]);

% [0 1] are the signals of interest. Add to both scopes.

addsignal(sc,[0 1]);

% Each scope triggers next scope at end of a 500 sample acquisition.

set(sc, 'NumSamples', 500, 'TriggerSample', -1);

set(sc, 'TriggerMode', 'Scope');

sc(1).TriggerScope = 2;

2-19

2 Targets and Scopes in the MATLAB® Interface

sc(2).TriggerScope = 1;

% Initialize time and data log.

t = [];

data = zeros(0, 2);

% Start the scopes and the model.

start(sc);

start(tg);

% Start things off by triggering scope 1.

scNum = 1;

sc(scNum).trigger;

% Use the two scopes as a double buffer to log the data.

while (1)

% Wait until this scope has finished acquiring 500 samples

% or the model stops (scope is interrupted).

while ~(strcmp(sc(scNum).Status, 'Finished') || ...

strcmp(sc(scNum).Status, 'Interrupted')), end

% Stop buffering data when the model stops.

if strcmp(tg.Status, 'stopped')

break

end

% Save the data.

t(end + 1 : end + 500) = sc(scNum).Time;

data(end + 1 : end + 500, :) = sc(scNum).Data;

% Restart this scope.

start(sc(scNum));

% Switch to the next scope.

scNum = 3 - scNum;

end

% Remove the scopes we added.

remscope(tg,[1 2]);

% Plot the data.

plot(t,data); grid on; legend('Signal 0','Signal 1');

2-20

3

Signals and Parameters

Changing parameters in your target application while it is running in real
time, and checking the results by viewing signal data, are two important
prototyping tasks. The xPC Target software includes command-line and
graphical user interfaces to complete these tasks. This chapter includes the
following sections:

• “Monitoring Signals” on page 3-2

• “Signal Tracing” on page 3-15

• “Signal Logging” on page 3-54

• “Parameter Tuning and Inlining Parameters” on page 3-63

3 Signals and Parameters

Monitoring Signals

In this section...

“Introduction” on page 3-2
“Signal Monitoring with xPC Target Explorer” on page 3-2
“Signal Monitoring with the MATLAB Interface” on page 3-9
“Monitoring Stateflow States” on page 3-10

Introduction
Signal monitoring is the process for acquiring signal data during a real-time
run without time information. The advantage with signal monitoring is that
there is no additional load on the real-time tasks. Use signal monitoring to
acquire signal data without creating scopes that run on the target PC.

In addition to signal monitoring, the xPC Target software enables you to
monitor Stateflow® states as test points through the xPC Target Explorer
and MATLAB command-line interfaces. You designate data or a state in a
Stateflow diagram as a test point. This makes it observable during execution.
See the Stateflow and Stateflow® Coder™ User’s Guide for details. You
can work with Stateflow states as you do with xPC Target signals, such as
monitoring or plotting Stateflow states.

After you start running a target application, you can use signal monitoring to
get signal data.

Note xPC Target Explorer works with multidimensional signals in
column-major format.

Signal Monitoring with xPC Target Explorer
This procedure uses the model xpcosc.mdl as an example, and assumes
you created and downloaded the target application to the target PC. For
meaningful values, the target application should be running.

3-2

Monitoring Signals

1 If xPC Target Explorer is not started, start it now. In xPC Target
Explorer, select the node of the running target application in which you
are interested, for example, xpcosc.

The target PC Target Application Properties pane appears.

2 In the Solver pane, change the Stop time parameter to inf (infinity).
Click Apply.

3 To get the list of signals in the target application, expand the target
application node, then expand the Model Hierarchy node under the target
application node.

3-3

3 Signals and Parameters

The model hierarchy expands to show the Simulink objects (signals and
parameters) in the Simulink model.

3-4

Monitoring Signals

The Model Hierarchy node can have the following types of nodes:

Icons Nodes

Subsystems, including their signals and parameter

Referenced models, including their signals set as test points

Parameters

Signals

Stateflow states set as test points

Only xPC Target tunable parameters and signals of the application, as
represented in the Simulink model, appear in the Model Hierarchy node.

Note This example currently has only parameters and signals. If a block
has a name that consists of only spaces, xPC Target Explorer does not
display a node for that block. To monitor a signal from that block, provide
an alphanumeric name for that block and rebuild and download that block.

If you make changes (such as adding an xPC Target scope) to the model
associated with the downloaded application, then rebuild that model and
download it again to the target PC, you should reconnect to the target PC
to refresh the Model Hierarchy node.

4 To view only labeled signals (the xPC Target software refers to Simulink
signal names as signal labels) ,:

a Open the xpcosc.mdl file.

b Right-click a signal line and name that signal. For example, right-click
the output of the Signal Generator block and name it SignalG.

c Build and download the updated model.

d When the updated model is displayed in xPC Target Explorer, right-click
the Model Hierarchy node and select View Only Labeled Signals.
This command assumes that you have labeled one or more signals in
your model.

3-5

3 Signals and Parameters

e Re-expand the Model Hierarchy node to see the labeled signals.

To view the block path for a labeled signal, hover over the labeled signal.
For example,

To display all the model signals again, right-click the Model Hierarchy
node and select View All Signals. You can still view the signal label by
hovering over the labeled signal. For example,

3-6

Monitoring Signals

f Return to the model, remove the signal name you added, and rebuild and
download the target application. The remaining examples in this section
assume that you do not have any labelled signals in your model.

5 To go to the corresponding Simulink model subsystem, right-click the
application node and select Go to Simulink subsystem or block.

6 To get the value of a signal, select the signal in the Model Hierarchy node.

3-7

3 Signals and Parameters

The value of the signal is shown in the right pane.

7 Right-click the target application and select Start.

The application starts running.

8 To change the numeric format display of the signal, right-click the Model
Hierarchy node and select Edit Signals Format String.

The Display Format String dialog box is displayed.

3-8

Monitoring Signals

9 Enter the signal format. Use one of the following. By default, the format is
%0.25g.

Type Description

%e or %E Exponential format using e or E
%f Floating point
%g Signed value printed in f or e format depending on

which is smaller
%G Signed value printed in f or E format depending on

which is smaller

Monitoring Signals from Referenced Models
You can monitor signals from referenced models the same way that you do
any other signal, with the exception that you must set the test point for the
signal in the referenced model before you can monitor it.

Signal Monitoring with the MATLAB Interface
This procedure uses the model xpc_osc3.mdl as an example, and assumes
you created and downloaded the target application to the target PC. It also
assumes that you have assigned tg to the appropriate target PC.

1 To get a list of signals, type either

set(tg, 'ShowSignals', 'On')

or

tg.ShowSignals='On'

3-9

3 Signals and Parameters

The latter command causes the MATLAB window to display a list of the
target object properties for the available signals. For example, the signals
for the model xpc_osc3.mdl are shown below. Note that the Label column
is empty because there are no labelled signals in the model. If your signal
has a label, its label is displayed in this column.

ShowSignals = on
Signals = INDEX VALUE BLOCK NAME LABEL

0 0.000000 Signal Generator
1 0.000000 Transfer Fcn

2 To get the value of a signal, use the getsignal method. In the MATLAB
Command Window, type

tg.getsignal(0)

where 0 is the signal index. the MATLABinterface displays the value of
signal 1.

ans=
3.731

Note The xPC Target software lists referenced model signals with their full
block path. For example, xpc_osc5/childmodel/gain.

See also “Signal Tracing with the MATLAB Interface” on page 3-36.

Monitoring Stateflow States
This procedure uses the model sf_car.mdl as an example. It describes one
way to set Stateflow states as test points for monitoring.

1 In the MATLAB window, type

sf_car

2 In the Simulink window, click Simulation > Configuration Parameters.

The Configuration Parameters dialog box is displayed for the model.

3-10

Monitoring Signals

3 Click the Real-Time Workshop node.

The Real-Time Workshop pane opens.

4 To build a basic target application, in the Target selection section, click
the Browse button at the System target file list. Click xpctarget.tlc,
then click OK.

5 As necessary, you can click the xPC Target options node and continue to
make changes.

6 When you are done, click OK.

7 In the sf_car model, double-click the shift_logic chart.

The shift_logic chart is displayed.

8 In the chart, click Tools > Explore.

3-11

3 Signals and Parameters

The Model Explorer is displayed.

9 In the Model Explorer, expand sf_car.

10 Expand shift_logic.

11 Expand gear_state, then select first.

12 In the rightmost pane, State first, select the Test point check box. This
creates a test point for the first state.

13 Click Apply.

14 Build and download the sf_car target application to the target PC.

You can now view the states with xPC Target Explorer or the MATLAB
interface.

Monitoring Stateflow States with xPC Target Explorer
This topic assumes that you have already set Stateflow states as test points
(see “Monitoring Stateflow States” on page 3-10 if you have not).

1 If the xPC Target Explorer is not yet started, start it now and connect it to
the target PC that has the downloaded sf_car target application.

2 To view the test point in the xPC Target Explorer, expand the
Model Hierarchy node and navigate to shift_logic. The test point
gear_state.first appears like any other signal in the hierarchy, as
follows:

3-12

Monitoring Signals

3 Choose the state as you do a signal to monitor.

Monitoring Stateflow States with the MATLAB Interface
This topic assumes that you have already set Stateflow states as test points
(see “Monitoring Stateflow States” on page 3-10 if you have not).

1 To get a list of signals in the MATLAB Command Window, type

tg=xpc

2 To display the signals in the target application, type either

set(tg, 'ShowSignals', 'On'); tg

or

tg.ShowSignals='On'

The latter causes the MATLAB window to display a list of the target object
properties for the available signals.

3-13

3 Signals and Parameters

For Stateflow states that you have set as test points, the state appears in
the BLOCK NAME column like any signal. For example, if you set a test point
for the first state of gear_state in the shift_logic chart of the sf_car
model, the state of interest is first. This state appears as follows in the
list of signals in the MATLAB interface:

shift_logic:gear_state.first

shift_logic is the path to the Stateflow chart and gear_state.first is
the path to the specific state.

3-14

Signal Tracing

Signal Tracing

In this section...

“Introduction” on page 3-15
“Signal Tracing with xPC Target Explorer” on page 3-15
“Signal Tracing with the MATLAB Interface” on page 3-36
“Signal Tracing with xPC Target Scope Blocks” on page 3-46
“Signal Tracing with Simulink External Mode” on page 3-48
“Signal Tracing with a Web Browser” on page 3-52

Introduction
Signal tracing is the process of acquiring and visualizing signals while
running a target application. In its most basic sense, allows you to acquire
signal data and visualize it on the target PC or upload the signal data and
visualize it on the host PC while the target application is running.

Signal tracing differs from signal logging. With signal logging you can only
look at signals after a run is finished and the log of the entire run is available.
For information on signal logging, see “Signal Logging” on page 3-54.

Note xPC Target Explorer works with multidimensional signals in
column-major format.

Signal Tracing with xPC Target Explorer
The procedures in this topic use the model xpcosc.mdl as an example, and
assume you have created, downloaded, and started the target application
on the target PC.

• “Creating Scopes” on page 3-16

• “Adding Signals to Scopes” on page 3-23

• “Stopping Scopes” on page 3-27

3-15

3 Signals and Parameters

• “Software Triggering Scopes” on page 3-28

• “Configuring the Host Scope Viewer” on page 3-30

• “Copying Files to the Host PC” on page 3-30

• “Exporting Data from Scopes of Type File to MATLAB Workspace” on page
3-32

• “Saving and Reloading xPC Target Application Sessions” on page 3-34

• “Deleting Files from the Target PC” on page 3-36

You can add or remove signals from scopes of type target or host while the
scope is either stopped or running. For scopes of type file, you must stop the
scope first before adding or removing signals.

Creating Scopes

1 In xPC Target Explorer, ensure that your xpcosc application is still
running.

2 To get the list of signals in the target application, expand the Model
Hierarchy node under the target application.

3-16

Signal Tracing

The model hierarchy expands to show the elements in the Simulink model.

3 To get the list of scope types you can have in the target application, expand
the xPC Scopes node below the application node.

The xPC Scopes node expands to show the possible scope types a target
application can have.

3-17

3 Signals and Parameters

4 To create a scope to display on the target PC, right-click the Target Scopes
node under the xPC Scopes node.

A context menu appears. This lists the actions you can perform on target
PC scopes. For example, within the current context, you can create a
target PC scope.

5 Select Add Target Scope.

A scope node appears under Target Scopes. In this example, the new
scope is labeled Scope 1.

3-18

Signal Tracing

You can add other scopes, including those of type host and file. Note, you
can add as many scopes of type file and host as you want. as long as your
target PC resources can support them.

6 To create a scope to be displayed on the host PC, right-click the Host
Scopes node under the xPC Scopes node.

A context menu appears. This lists the actions you can perform on host PC
scopes. For example, within the current context, you can create a host
PC scope.

7 Select Add Host Scope.

A scope node appears under Host Scopes. In this example, the new scope
is labeled as Scope 2.

8 To visualize the host scope on the host PC, right-click Host Scopes from
the xPC Scopes node.

A drop-down list appears.

3-19

3 Signals and Parameters

9 Select View Scopes.

The xPC Target Host Scope Viewer window appears. Note that the signals
you add to the scope will appear at the top right of the viewer.

10 To list the properties of the scope object Scope 2, click the xPC Target
Explorer tab to return to that window, and left-click Scope 2. (Note that
you can configure the docking view using the MATLAB docking feature.)

The scope properties are shown in the rightmost pane.

3-20

Signal Tracing

11 To create a scope to acquire signal data into a file on the target PC file
system, right-click the File Scopes node under the xPC Scopes node.
Select Add File Scope.

A scope node appears under File Scopes. In this example, the new scope
is labeled Scope 3.

By default, the software creates a file in the target PC C:\ directory. The
name of the file typically consists of the scope object name, ScopeId, and
the beginning letters of the first signal added to the scope.

3-21

3 Signals and Parameters

12 If you want to specify a different directory or filename, select the scope.
The scope property pane is displayed. In the File name field, enter the
full pathname for the file. Note that the current directory for the target
PC appears at the top of the pane.

Your next task is to add signals to the scopes. The following procedure
assumes that you have added scopes to the target PC and host PC.

3-22

Signal Tracing

Adding Signals to Scopes
This topic describes how to add signals using the xPC Target Explorer Add
to Scopes command. If a scope does not exist, you can drag a signal to a
Host Scope, Target Scope, or File Scope icon to create a scope of that type in
xPC Target Explorer.

1 In the xPC Target Explorer window, add signals to the target PC scope,
Scope 1. For example, to add signals Integrator1 and Signal Generator,
right-click each signal and select Add to Scopes. From the Add to
Scopes list, select Scope 1. (Note that you can also drag the signal to the
scope to add the signal to that scope.)

The Scope 1 node is shown with a plus sign.

2 Expand the Scope 1 node.

The Scope 1 signals are displayed.

If one of the signals has been labeled. you can hover over the signal to
display the signal label. For example,

3-23

3 Signals and Parameters

3 Start the scope. For example, to start Scope 1, right-click it and select
Start.

The target screen plots the signals after collecting each data package.
During this time, you can observe the behavior of the signals while the
scope is running.

4 Add signals to the host PC scope. For example, to add signals Integrator1
and Signal Generator, right-click each signal and select Add to Scopes.

3-24

Signal Tracing

From the Add to Scopes list, select Scope 2. (Note that you can also drag
a signal from one scope to another to add that signal to another scope.)

The Scope 2 node is shown with a plus sign.

5 Expand the Scope 2 node.

The Scope 2 signals are displayed.

6 Start the scope. For example, to start the scope Scope 2, right-click Scope
2 in the Host Scopes node of the xPC Target Explorer and select Start.

The xPC Target Host Scope Viewer window plots the signals after collecting
each data package. During this time, you can observe the behavior of the
signals while the scope is running.

3-25

3 Signals and Parameters

7 Add signals to the scope of type file. For example, to add signals
Integrator1 and Signal Generator, right-click each signal and select
Add to Scopes. From the Add to Scopes list, select Scope 3. (Note that
you can also drag a signal from one scope to another to add that signal to
another scope.)

The Scope 3 node is shown with a plus sign.

8 Expand the Scope 3 node.

The Scope 3 signals are displayed.

3-26

Signal Tracing

9 To specify a filename for the data file, select the scope of type file. In
the right pane, enter a name in the Filename parameter. While in the
parameter field, press Enter to save the filename.

Note that there is no name initially assigned. If you do not specify a
filename, then after you start the scope, the software assigns a name for
the target PC file to acquire the signal data. This name typically consists
of the scope object name, ScopeId, and the beginning letters of the first
signal added to the scope.

10 Start the scope. For example, to start the scope Scope 3, right-click Scope
3 in the File Scopes node of the xPC Target Explorer and select Start.

For scopes of type file, the xPC Target software saves data to a file on the
target PC flash disk.

Your next task is to stop the scopes. The following procedure assumes that
you have started scopes.

Stopping Scopes

1 Stop the scopes. For example, to stop Scope 1, right-click it and select
Stop.

The signals shown on the target PC stop updating while the target
application continues running, and the target PC displays the following
message:

Scope: 1, set to state 'interrupted'

2 Stop the target application. For example, to stop the target application
xpcosc, right-click xpcosc and select Stop.

The target application on the target PC stops running, and the target PC
displays the following messages:

3-27

3 Signals and Parameters

System: execution stopped
minimal TET: 0.0000006 at time 0.001250
maximal TET: 0.0000013 at time 75.405500

Note that if you stop the target application before stopping the scope, the
scope stops, too.

If you have scopes of type file, you can copy the file that contains the signal
data from the target PC to the host PC. See “Copying Files to the Host PC”
on page 3-30.

Software Triggering Scopes
You can set up a scope such that only a user can trigger the scope. This
section assumes that you have added a scope to your target application (see
“Creating Scopes” on page 3-16) and that you have added signals to that scope
(see “Adding Signals to Scopes” on page 3-23).

1 In the xPC Target Explorer window, select the scope that you want to
trigger by software. For example, select Scope 1.

The properties pane for that scope is displayed.

3-28

Signal Tracing

2 From the Trigger mode list, select Software. Click Apply.

3 Start the scope and target application.

4 Observe that the scope has no plotted data.

5 Right-click the scope to be triggered. For example, select Scope 1.

6 Select Trigger.

7 Observe that the scope now has plotted data.

3-29

3 Signals and Parameters

Configuring the Host Scope Viewer
You can customize your host scope viewer. This section assumes that
you have added a host scope to your target application, started the host
scope viewer, and added signals Integrator1 and Signal Generator (see
“Creating Scopes” on page 3-16 and “Adding Signals to Scopes” on page 3-23).
These viewer settings are per scope.

In the xPC Target Host Scope Viewer, right-click anywhere in the axis area of
the viewer.

A context menu is displayed. This context menu contains options for the
following:

• View Mode— Select Graphical for a graphical display of the data. Select
Numerical for a numeric representation of the data.

• Legends — Select and deselect this option to toggle the display of the
signals legend in the top right of the viewer.

• Grid— Select and deselect this option to toggle the display of grid lines in
the viewer.

• Y-Axis— Enter the desired values. In the Enter Y maximum limit and
Enter Y minimum limit text boxes, enter the range for the y-axis in the
Scope window.

• Export — Select the data to export. Select Export Variable Names
to export scope data names. In the Data Variable Name and Time
Variable Name text boxes, enter the names of the MATLAB variables to
save data from a trace. Click the OK button. The default name for the data
variable is application_name_scn_data, and the default name for the time
variable is application_name_scn_time where n is the scope number.
Select Export Scope Data to export scope data to the MATLAB interface.

Copying Files to the Host PC
From xPC Target Explorer, you can download target PC files from the target
PC to the host PC.

1 In xPC Target Explorer, expand the target PC node associated with the
target PC file system you want to access. For example, expand TargetPC1.

3-30

Signal Tracing

2 Under TargetPC1, expand the File System node.

Nodes representing the drives on the target PC are displayed.

3 Expand the node of the drive that contains the file you want. For example,
local disk: c:\.

4 Select the directory that contains the file you want. For example, select
the node labeled local disk: c:\.

The contents of that directory are displayed in the right pane.

5 In the right pane, right-click the file you want to copy to the host PC. For
example, right-click SC3SIGNA.DAT.

A context-sensitive menu is displayed.

3-31

3 Signals and Parameters

6 Select Save to Host PC.

A browser dialog box is displayed.

7 Choose the directory to contain the signal data file. If you want, you can also
save the file under a different name or create a new directory for the file.

xPC Target Explorer copies the contents of the selected file, SC1INTEG.DAT
for example, to the selected directory.

You can examine the contents of the signal data file. See “Retrieving a File
from the Target PC to the Host PC” on page 9-7 in Chapter 9, “Working with
Target PC Files and File Systems”.

Exporting Data from Scopes of Type File to MATLAB Workspace
From xPC Target Explorer, you can export data from target PC files from the
target PC to the MATLAB workspace. This topic assumes that you have

3-32

Signal Tracing

created a scope of type file that contains signal data (see “Adding Signals to
Scopes” on page 3-23).

1 In xPC Target Explorer, expand the target PC node associated with the
target PC file system you want to access. For example, expand TargetPC1.

2 Under TargetPC1, find the target application and ensure that it is not
running.

3 Under TargetPC1, expand the xPC Scopes node.

All the scopes you have added are displayed.

4 Right-click on the scope of type file for which you want to export the signal
data and select Export to workspace.

The Export to workspace dialog box is displayed.

5 Enter a variable name for the workspace data. For example, enter
sig_integ. Click OK.

In the MATLAB desktop, theWorkspace pane displays the new variable
name.

3-33

3 Signals and Parameters

You can examine and otherwise manipulate the data. You can also plot the
data with plot(sig_integ.data). This is an alternate method to “Retrieving
the Contents of a File from the Target PC to the Host PC” on page 9-11 in
Chapter 9, “Working with Target PC Files and File Systems”.

Saving and Reloading xPC Target Application Sessions
Once you have a set of application configurations, you can save the xPC
Target application session, including scope and target PC settings, to a
standard MATLAB MAT-file on the host PC. You can then later reload this
saved session to another xPC Target application session. This feature lets you
save and restore xPC Target application sessions so that you do not have to
reconfigure target PC and target application settings each time you start
xPC Target Explorer.

To save a session,

1 Ensure that xPC Target Explorer is connected to a target PC.

2 In xPC Target Explorer, load a target application on the target PC.

3 In xPC Target Explorer, right-click the target PC you are interested in and
select Save Session. For example,

3-34

Signal Tracing

A Save Target Session as dialog box is displayed.

4 As necessary, browse to the desired directory and enter a unique name. For
example, xpcsession1.mat.

To restore a session,

1 Ensure that xPC Target Explorer is connected to a target PC.

2 In xPC Target Explorer, load a target application on the target PC. This
target application must be the same target application for which the
session was saved.

3 In xPC Target Explorer, right-click the target PC you are interested in and
select Load Session. For example,

3-35

3 Signals and Parameters

A Load Target Session as dialog box is displayed.

4 As necessary, browse to the desired directory and select the session you are
interested in. For example, xpcsession1.mat.

A dialog box is displayed asking you to confirm that you want to load a
new session.

5 Click Yes.

xPC Target Explorer loads the saved settings.

Deleting Files from the Target PC
From xPC Target Explorer on the host PC, you can delete the scope data
file on the target PC file system. Use the same procedure as described in
“Copying Files to the Host PC” on page 3-30, but select Delete instead of
Save to Host PC. xPC Target Explorer removes the selected file from the
target PC file system.

Signal Tracing with the MATLAB Interface
Creating a scope object allows you to select and view signals using the scope
methods. This section describes how to trace signals using xPC Target

3-36

Signal Tracing

functions instead of using the xPC Target graphical user interface. This
procedure assumes that you have assigned tg to the appropriate target PC.

After you create and download the target application, you can view output
signals.

Using the MATLAB interface, you can trace signals with

• Host or target scopes (see “Signal Tracing with the MATLAB Interface and
Scopes of Type Target” on page 3-37 for a description of with target scopes)

• Scopes of type file (see “Signal Tracing with the MATLAB Interface and
Scopes of Type File” on page 3-41)

You must stop the scope before adding or removing signals from the scope.

Signal Tracing with the MATLAB Interface and Scopes of Type
Target
This procedure uses the Simulink model xpcosc.mdl as an example, and
assumes you have built the target application for this model. It describes how
to trace signals with target scopes.

1 Start running your target application. Type any of

+tg

or

tg.start

or

start(tg)

The target PC displays the following message.

System: execution started (sample time: 0.0000250)

2 To get a list of signals, type either

set(tg, 'ShowSignals', 'on')

3-37

3 Signals and Parameters

or

tg.ShowSignals='on'

The MATLAB window displays a list of the target object properties for
the available signals. For example, the signals for the model xpcosc.mdl
are as follows:

ShowSignals = on
Signals = INDEX VALUE BLOCK NAME LABEL

0 0.000000 Integrator1
1 0.000000 Signal Generator
2 0.000000 Gain
3 0.000000 Integrator
4 0.000000 Gain1
5 0.000000 Gain2
6 0.000000 Sum

For more information, see “Signal Monitoring with the MATLAB Interface”
on page 3-9.

3 Create a scope to be displayed on the target PC. For example, to create a
scope with an identifier of 1 and a scope object name of sc1, type

sc1=tg.addscope('target', 1)

or

sc1=addscope(tg, 'target', 1)

4 List the properties of the scope object. For example, to list the properties of
the scope object sc1, type

sc1

The MATLAB window displays a list of the scope object properties. Notice
that the scope properties Time and Data are not accessible with a scope
of type target.

xPC Scope Object
Application = xpcosc
ScopeId = 1

3-38

Signal Tracing

Status = Interrupted
Type = Target
NumSamples = 250
NumPrePostSamples = 0
Decimation = 1
TriggerMode = FreeRun
TriggerSignal = -1
TriggerLevel = 0.000000
TriggerSlope = Either
TriggerScope = 1
TriggerSample = -1
Mode = Redraw (Graphical)
YLimit = Auto
Grid = On
Signals = no Signals defined

5 Add signals to the scope object. For example, to add Integrator1 and
Signal Generator, type

sc1.addsignal ([0,1])

or

addsignal(sc1,[0,1])

The target PC displays the following messages.

Scope: 1, signal 0 added
Scope: 1, signal 1 added

After you add signals to a scope object, the signals are not shown on the
target screen until you start the scope.

6 Start the scope. For example, to start the scope sc1, type either

+sc1

or

sc1.start

or

3-39

3 Signals and Parameters

start(sc1)

The target screen plots the signals after collecting each data package.
During this time, you can observe the behavior of the signals while the
scope is running.

7 Stop the scope. Type either

-sc1

or

sc1.stop

or

stop(sc1)

The signals shown on the target PC stop updating while the target
application continues running, and the target PC displays the following
message.

Scope: 1, set to state 'interrupted'

8 Stop the target application. In the MATLAB window, type either

-tg

or

tg.stop

or

stop(tg)

The target application on the target PC stops running, and the target PC
displays the following messages.

System: execution stopped
minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

3-40

Signal Tracing

Signal Tracing with the MATLAB Interface and Scopes of Type
File
This procedure uses the Simulink model xpcosc.mdl as an example, and
assumes you have built the target application for this model. It also assumes
that you have a serial communication connection. This topic describes how to
trace signals with scopes of type file.

Note The signal data file can quickly increase in size. You should examine
the file size between runs to gauge the growth rate of the file. If the signal
data file grows beyond the available space on the disk, the signal data might
be corrupted.

1 Create an xPC Target application that works with scopes of type file. Type

tg=xpctarget.xpc('rs232', 'COM1', '115200')

2 To get a list of signals, type either

set(tg, 'ShowSignals', 'on')

or

tg.ShowSignals='on'

The MATLAB window displays a list of the target object properties for
the available signals. For example, the signals for the model xpcosc.mdl
are shown below.

ShowSignals = on
Signals = INDEX VALUE BLOCK NAME LABEL

0 0.000000 Integrator1
1 0.000000 Signal Generator
2 0.000000 Gain
3 0.000000 Integrator
4 0.000000 Gain1
5 0.000000 Gain2
6 0.000000 Sum

3-41

3 Signals and Parameters

For more information, see “Signal Monitoring with the MATLAB Interface”
on page 3-9.

3 Start running your target application. Type

+tg

or

tg.start

or

start(tg)

The target PC displays the following message:

System: execution started (sample time: 0.0000250)

4 Create a scope to be displayed on the target PC. For example, to create a
scope with an identifier of 2 and a scope object name of sc2, type

sc2=tg.addscope('file', 2)

or

sc2=addscope(tg, 'file', 2)

5 List the properties of the scope object. For example, to list the properties of
the scope object sc2, type

sc2

The MATLAB window displays a list of the scope object properties. Notice
that the scope properties Time and Data are not accessible with a scope
of type target.

xPC Scope Object
Application = xpcosc
ScopeId = 2
Status = Interrupted
Type = File
NumSamples = 250

3-42

Signal Tracing

NumPrePostSamples = 0
Decimation = 1
TriggerMode = FreeRun
TriggerScope = 2
TriggerSample = 0
TriggerSignal = -1
TriggerLevel = 0.000000
TriggerSlope = Either
Signals = no Signals defined
FileName = unset
Mode = Lazy
WriteSize = 512
AutoRestart = off

Note that there is no name initially assigned to FileName. After you start
the scope, xPC Target assigns a name for the file to acquire the signal data.
This name typically consists of the scope object name, ScopeId, and the
beginning letters of the first signal added to the scope.

6 Add signals to the scope object. For example, to add Integrator1 and
Signal Generator, type

sc2.addsignal ([0,1])

or

addsignal(sc2,[0,1])

The target PC displays the following messages.

Scope: 2, signal 0 added
Scope: 2, signal 1 added

After you add signals to a scope object, the scope of type file does not
acquire signals until you start the scope.

7 Start the scope. For example, to start the scope sc2, type

+sc2

or

3-43

3 Signals and Parameters

sc2.start

or

start(sc2)

The target PC displays the following message.

FileSys:File c:\sc2Integ.dat opened

The MATLAB window displays a list of the scope object properties. Notice
that FileName is assigned a default filename to contain the signal data for
the scope of type file. This name typically consists of the scope object
name, ScopeId, and the beginning letters of the first signal added to the
scope.

Application = xpcosc
ScopeId = 2
Status = Pre-Acquiring
Type = File
NumSamples = 250
NumPrePostSamples = 0
Decimation = 1
TriggerMode = FreeRun
TriggerScope = 2
TriggerSample = 0
TriggerSignal = 0
TriggerLevel = 0.000000
TriggerSlope = Either
Signals = 0 : Integrator1

1 : Signal Generator
FileName = c:\sc2Integ.dat
Mode = Lazy
WriteSize = 512
AutoRestart = off

8 Stop the scope. Type

-sc2

or

3-44

Signal Tracing

sc2.stop

or

stop(sc2)

The signals shown on the target PC stop updating while the target
application continues running, and the target PC displays the following
message.

FileSys:File c:\sc2Integ.data closed
Scope: 2, set to state 'Interrupted'

9 Stop the target application. In the MATLAB window, type

-tg

or

tg.stop

or

stop(tg)

The target application on the target PC stops running, and the target PC
displays messages similar to the following.

System: execution stopped
minimal TET: 0.00006 at time 0.004250
maximal TET: 0.000037 at time 14.255250

To access the contents of the signal data file that the xPC Target scope of type
file creates, use the xPC Target file system object (xpctarget.fs) from the
host PC MATLAB window. To view or examine the signal data, you can use
the readxpcfile utility with the plot function. For further details on the
xpctarget.fs file system object and the readxpcfile utility, see Chapter 9,
“Working with Target PC Files and File Systems”.

3-45

3 Signals and Parameters

Signal Tracing with xPC Target Scope Blocks
Use scopes of type host to log signal data triggered by an event while your
target application is running. This topic describes how to use the three scope
block types.

Note xPC Target supports ten scopes of type target. It can support an
infinite number of scopes of type host, as long as the target PC resources can
support them. It can support eight scopes of type file. Each scope of type
target can contain up to 10 signals. Each scope of type file or host can
contain an infinite number of signals, as long as the target PC resources
can support them.

Note If your model has the output of a Mux block connected to the input of
an xPC Target Scope block, the signal might not be observable. To ensure that
you can observe the signal, add a unity gain block (a Gain block with a gain of
1) between the Mux block and the xPC Target Scope block.

Using xPC Target Scope Blocks from Referenced Models
You cannot add any type of xPC Target scope to a referenced model. Doing
so causes an error. You can add only an xPC Target scope to the topmost
model. If you want to log signals from referenced models, you can do so with
the logging mechanism in xPC Target Explorer or with the xPC Target scope
objects.

Scope of Type Host
For a scope of type host, the scope acquires the first N samples into a buffer.
You can retrieve this buffer into the scope object property sc.Data. The scope
then stops and waits for you to manually restart the scope.

The number of samples N to log after triggering an event is equal to the value
you entered in the Number of Samples parameter.

3-46

Signal Tracing

Select the type of event in the Block Parameters: Scope (xPC Target) dialog
box by setting Trigger Mode to Signal Triggering, Software Triggering,
or Scope Triggering.

Scope of Type Target
For a scope of type target, logged data (sc.Data and sc.Time) is not
accessible over the command-line interface on the host PC. This is because
the scope object status (sc.Status) is never set to Finished. Once the scope
completes one data cycle (time to collect the number of samples), the scope
engine automatically restarts the scope.

If you create a scope object, for example, sc = getscopes(tg,1) for a scope
of type target, and then try to get the logged data by typing sc.Data, you
get an error message:

Scope # 1 is of type 'Target'! Property Data is not accessible.

If you want the same data for the same signals on the host PC while the data
is displayed on the target PC, you need to define a second scope object with
type host. Then you need to synchronize the acquisitions of the two scope
objects by setting TriggerMode for the second scope to 'Scope'.

Scope of Type File
For a scope of type file, the scope acquires data and writes it to the file
named in the FileName parameter in blocks of size WriteSize. The scope
acquires the first N samples into the memory buffer. This memory buffer is
of length Number of Samples. The memory buffer writes data to the file
in WriteSize chunks. If the AutoRestart check box is selected, the scope
then starts over again, overwriting the memory buffer. The additional data
is appended to the end of the existing file. If the AutoRestart box is not
selected, the scope collects data only up to the number of samples, and then
stops. The number of samples N to log after triggering an event is equal to the
value you entered in the Number of Samples parameter. If you stop, then
start the scope again, the data in the file is overwritten with the new data.

Select the type of event in the Block Parameters: Scope (xPC Target) dialog
box by setting Trigger Mode to Signal Triggering, Software Triggering,
or Scope Triggering.

3-47

3 Signals and Parameters

Signal Tracing with Simulink External Mode
You can use Simulink external mode to establish a communication channel
between your Simulink block diagram and your target application. The block
diagram becomes a graphical user interface to your target application and
Simulink scopes can acquire signal data from the target application. For each
Simulink scope, the xPC Target software adds an xPC Target scope of type
host to the system to upload signals. You can control which signals to upload
through the External Signal & Triggering dialog box (see “Signal Selection” in
the Real-Time Workshop® User’s Guide.

Note Do not use Simulink external mode while xPC Target Explorer is
running. Use only one interface or the other.

Limitations
The following are limitations of uploading xPC Target signals to Simulink
external mode:

• When setting up signal triggering (Source set to signal), you must explicitly
specify the element number of the signal in the Trigger signal:Element
field. If the signal is a scalar, enter a value of 1. If the signal is a wide
signal, enter a value from 1 to 10. Do not enter Last or Any in this field
when uploading xPC Target signals to Simulink scopes.

• The Direction:Holdoff field has no effect for the xPC Target signal
uploading feature.

Before You Start
The procedures in this topic use the Simulink model xpcosc.mdl, which
already contains a Simulink Scope block, as an example. After you download
your target application to the target PC, you can connect your Simulink model
to the target application.

Signal Tracing with External Mode Example
This procedure assumes that you have downloaded your target application
to the target PC.

3-48

Signal Tracing

Note that this procedure edits the Simulink window External Mode Control
Panel and assumes that you are familiar with that dialog box. See “External
Mode Control Panel” in the Real-Time Workshop User’s Guide for details of
the Simulink external mode dialog box.

1 In the MATLAB window, type

xpcosc

2 In the Simulink window, and from the Tools menu, select External Mode
Control Panel.

The External Mode Control Panel dialog box opens.

3 Click the Signal & Triggering button.

The External Signal & Triggering dialog box opens.

4 Ensure that the Source parameter is set to manual.

5 Set the Mode parameter to normal. This ensures that the scope acquires
data continuously.

6 Select the Arm when connecting to target check box.

7 In the Duration box, enter the number of samples for which external mode
is to log data. The External Signal & Triggering dialog box should look
similar to the figure shown.

3-49

3 Signals and Parameters

8 Click Apply, then Close.

9 In the Simulink window, increase the simulation stop time. For example,
enter

50

10 From the File menu, select Save As and enter a filename. For example,
enter xpc_osc6.mdl and then click OK.

11 Build and download the target application. In the Simulink window and
from the Tools menu, select Real-Time Workshop. From the Real-Time
Workshop submenu, select Build Model.

The xPC Target software downloads the target application to the default
target PC.

3-50

Signal Tracing

12 In the Simulink window, and from the Simulation menu, select External.
A check mark appears next to the menu item External, and Simulink
external mode is activated.

13 If a Scope window is not displayed for the Scope block, double-click the
Scope block.

A Scope window is displayed.

14 In the Simulink window, and from the Simulation menu, select Connect
to target.

15 From the Simulation menu, select Start Real-Time Code.

The target application begins running on the target PC and the Scope window
displays plotted data.

3-51

3 Signals and Parameters

Signal Tracing with a Web Browser
The Web browser interface allows you to visualize data using a graphical
user interface.

After you connect a Web browser to the target PC, you can use the scopes page
to add, remove, and control scopes on the target PC:

1 In the left frame, click the Scopes button.

The browser loads the Scopes List pane into the right frame.

2 Click the Add Scope button.

A scope of type target is created and displayed on the target PC. The
Scopes pane displays a list of all the scopes present. You can add a new
scope, remove existing scopes, and control all aspects of a scope from this
page.

To create a scope of type host, use the drop-down list next to the Add
Scope button to select Host. This item is set to Target by default.

3 Click the Edit button.

The scope editing pane opens. From this pane, you can edit the properties
of any scope, and control the scope.

4 Click the Add Signals button.

The browser displays an Add New Signals list.

5 Select the check boxes next to the signal names, and then click the Apply
button.

A Remove Existing Signals list is added above the Add New Signals
list.

You do not have to stop a scope to make changes. If necessary, the Web
interface stops the scope automatically and then restarts it when the changes
are made. It does not restart the scope if the state was originally stopped.

3-52

Signal Tracing

When a host scope is stopped (Scope State is set to Interrupted) or finishes
one cycle of acquisition (Scope State is set to Finished), a button called Get
Data appears on the page. If you click this button, the scope data is retrieved
in comma-separated value (CSV) format. The signals in the scope are spread
across columns, and each row corresponds to one sample of acquisition. The
first column always corresponds to the time each sample was acquired.

Note If Scope State is set to Interrupted, the scope was stopped before it
could complete a full cycle of acquisition. Even in this case, the number of
rows in the CSV data will correspond to a full cycle. The last few rows (for
which data was not acquired) will be set to 0.

3-53

3 Signals and Parameters

Signal Logging

In this section...

“Introduction” on page 3-54
“Signal Logging with xPC Target Explorer” on page 3-54
“Signal Logging in the MATLAB Interface” on page 3-57
“Signal Logging with a Web Browser” on page 3-61

Introduction
Signal logging is the process for acquiring signal data during a real-time run,
stopping the target application, and then transferring the data to the host
PC for analysis. This is also known as real-time data streaming to the target
PC. You can plot and analyze the data, and later save it to a disk. xPC Target
signal logging samples at the base sample time. If you have a model with
multiple sample rates, add xPC Target scopes to the model to ensure that
signals are sampled at their appropriate sample rates.

Note The xPC Target software does not support logging data with decimation.

Note xPC Target Explorer works with multidimensional signals in
column-major format.

Signal Logging with xPC Target Explorer
You plot the outputs and states of your target application to observe the
behavior of your model, or to determine the behavior when you vary the input
signals and model parameters.

This procedure uses a model named xpc_osc4.mdl as an example and
assumes you have created a target application and downloaded it to the
target PC. The xpc_osc4.mdl is the same as xpc_osc3.mdl with the xPC
Target Scope block removed. See “xPC Target Application” in the xPC Target
Getting Started Guide.

3-54

Signal Logging

To create xpc_osc4:

1 In the MATLAB window, type

xpc_osc3

The xpc_osc3 model opens.

2 In the Simulink window, select and delete the xPC Target Scope block
and its connecting line.

3 From the File menu, click Save as. Enter xpc_osc4 and then click Save.

You can now build and download the model (see “Building and Downloading
the Target Application” in the xPC Target Getting Started Guide).

Note To use the xPC Target Explorer for signal logging, you need to add an
Outport block to your Simulink model, and you need to activate logging on the
Data Import/Export pane in the Configuration Parameters dialog box.

1 In xPC Target Explorer, select the downloaded target application node. For
example, xpc_osc4.

The right pane displays the target application properties dialog box for
xpc_osc4.

2 In the Logging pane, select the boxes of the signals you are interested in
logging. For example, select Output and TET. Click Apply.

3-55

3 Signals and Parameters

3 Start the target application. For example, in the xPC Target Hierarchy
pane, right-click the xpc_osc4 target application, then select Start.

4 Stop the target application. For example, in the Target Hierarchy pane,
right-click the xpc_osc4 target application, then select Stop.

5 Send the selected logged data to the MATLAB workspace. In the target
application properties dialog box for xpc_osc4, go to the Logging pane and
click the Send to MATLAB Workspace button.

In the MATLAB desktop, theWorkspace pane displays the logged data.

3-56

Signal Logging

You can examine and otherwise manipulate the data.

Signal Logging in the MATLAB Interface
You plot the outputs and states of your target application to observe the
behavior of your model, or to determine the behavior when you vary the input
signals and model parameters.

Time, states, and outputs— Logging the output signals is possible only if
you add Outport blocks to your Simulink model before the build process, and
in the Configuration Parameters Data Import/Export node, select the
Save to workspace check boxes. See “Entering Parameters for the Outport
Blocks” of the xPC Target Getting Started Guide.

Task execution time— Plotting the task execution time is possible only if
you select the Log Task Execution Time check box in the Configuration
Parameters xPC Target options tab. This check box is selected by default.
See “Adding an xPC Target Scope Block” of the xPC Target Getting Started
Guide.

All scopes copy the last N samples from the log buffer to the target object
logs (tg.TimeLog, tg.OutputLog, tg.StateLog, and tg.TETLog). The xPC
Target software calculates the number of samples N for a signal as the value
of Signal logging buffer size in doubles divided by the number of logged
signals (1 time, 1 task execution time ([TET]), outputs, states).

After you run a target application, you can plot the state and output signals.
This procedure uses the Simulink model xpc_osc3.mdl as an example, and

3-57

3 Signals and Parameters

assumes you have created and downloaded the target application for that
model. It also assumes that you have assigned tg to the appropriate target PC.

1 In the MATLAB window, type

tg=xpc

2 Type

+tg

or

tg.start

or

start(tg)

The target application starts and runs until it reaches the final time set in
the target object property tg.StopTime.

The outputs are the signals connected to Simulink Outport blocks. The
model xpcosc.mdl has just one Outport block, labeled 1, and there are two
states. This Outport block shows the signals leaving the blocks labeled
Integrator1 and Signal Generator.

3 Plot the signals from the Outport block and the states. In the MATLAB
window, type

plot(tg.TimeLog,tg.Outputlog)

Values for the logs are uploaded to the host PC from the target application
on the target PC. If you want to upload part of the logs, see the target
object method getlog.

3-58

Signal Logging

The plot shown below is the result of a real-time execution. To compare this
plot with a plot for a non-real-time simulation, see “Simulating the Model
from MATLAB” of the xPC Target Getting Started Guide.

4 In the MATLAB window, type

plot(tg.TimeLog,tg.TETLog)

Values for the task execution time (TET) log are uploaded to the host PC
from the target PC. If you want to upload part of the logs, see the target
object method getlog.

3-59

3 Signals and Parameters

The plot shown below is the result of a real-time run.

The TET is the time to calculate the signal values for the model during
each sample interval. If you have subsystems that run only under certain
circumstances, plotting the TET would show when subsystems were
executed and the additional CPU time required for those executions.

5 In the MATLAB window, type either

tg.AvgTET

or

get(tg,'AvgTET')

3-60

Signal Logging

The MATLAB interface displays the following information about the
average task execution time.

ans =
5.7528e-006

The percentage of CPU performance is the average TET divided by the
sample time.

Note that each outport has an associated column vector in tg.OutputLog.
You can access the data that corresponds to a particular outport by specifying
the column vector for that outport. For example, to access the data that
corresponds to Outport 2, use tg.outputlog(:,2).

Signal Logging with a Web Browser
When you stop the model execution, another section of the Web browser
interface appears that enables you to download logging data. This data is
in comma-separated value (CSV) format. This format can be read by most
spreadsheet programs and also by the MATLAB interface using the csvread
function.

This section of the Web browser interface appears only if you have enabled
data logging, and buttons appear only for those logs (states, output, and TET)
that are enabled. If time logging is enabled, the first column of the CSV file
is the time at which data (states, output, and TET values) was acquired. If
time logging is not enabled, only the data is in the CSV file, without time
information.

You analyze and plot the outputs and states of your target application to
observe the behavior of your model, or to determine the behavior when you
vary the input signals.

Time, states, and outputs — Logging the output signals is possible only if you
add Outport blocks to your Simulink model before the build process, and
in the Configuration Parameters Data Import/Export node, select the
Save to workspace check boxes. See “Entering Parameters for the Outport
Blocks” in xPC Target Getting Started Guide.

3-61

3 Signals and Parameters

Task execution time — Logging the task execution time is possible only if
you select the Log Task Execution Time check box in the Configuration
Parameters xPC Target options node. This check box is selected by
default. See “Entering Parameters for an xPC Target Scope Block” in xPC
Target Getting Started Guide.

3-62

Parameter Tuning and Inlining Parameters

Parameter Tuning and Inlining Parameters

In this section...

“Introduction” on page 3-63
“Parameter Tuning with xPC Target Explorer” on page 3-64
“Parameter Tuning with the MATLAB Interface” on page 3-67
“Parameter Tuning with Simulink External Mode” on page 3-70
“Parameter Tuning with a Web Browser” on page 3-73
“Saving and Reloading Application Parameters with the MATLAB
Interface” on page 3-73
“Inlined Parameters” on page 3-76

Introduction
By default, the xPC Target software lets you change parameters in your
target application while it is running in real time.

Note xPC Target Explorer works with multidimensional signals in
column-major format.

Note The xPC Target software cannot tune block parameters of type boolean.

You can also improve overall efficiency by inlining parameters. The xPC
Target product supports the Real-Time Workshop inline parameters
functionality (see the Real-Time Workshop documentation for further details
on inlined parameters). By default, this functionality makes all parameters
nontunable. If you want to make some of the inlined parameters tunable, you
can do so through the Model Parameter Configuration dialog box (see “Inlined
Parameters” on page 3-76).

3-63

3 Signals and Parameters

Note Opening a dialog box for a source block causes the Simulink software to
pause. While the Simulink software is paused, you can edit the parameter
values. You must close the dialog box to have the changes take effect and
allow the Simulink software to continue.

Parameter Tuning with xPC Target Explorer
The xPC Target software lets you change parameters in your target
application while it is running in real time. With these functions, you do not
need to set the Simulink interface to external mode, and you do not need to
connect the Simulink interface with the target application.

You can download parameters to the target application while it is running
or between runs. This feature lets you change parameters in your target
application without rebuilding the Simulink model. You cannot use xPC
Target Explorer to change tunable source block parameters while a simulation
is running.

After you download a target application to the target PC, you can change
block parameters using xPC Target Explorer. This procedure uses the
Simulink model xpcosc.mdl as an example, and assumes you have created
and downloaded the target application for that model.

1 In xPC Target Explorer, right-click the downloaded target application
node. For example, xpcosc.

2 Select Start.

3 To get the list of parameters in the target application, expand the Model
Hierarchy node under the target application.

3-64

Parameter Tuning and Inlining Parameters

The Model Hierarchy expands to show the elements in the Simulink
model.

The model hierarchy shows only those blocks that have tunable parameters.

4 Select the parameter of the signal you want to edit. For example, select
Gain.

The right pane displays the block parameters dialog box for Gain. There
is one parameter, Gain, for this block. The current value of the Gain
parameter is displayed.

5 Double-click the box that contains the gain value.

The box becomes editable.

6 Enter a new value for the gain.

3-65

3 Signals and Parameters

7 Press the Enter key.

The box is updated and the Update Parameter button becomes active.

If there is a scope, the plot frame then updates the signals after running
the simulation with the new parameter value.

8 Stop the target application. For example, to stop the target application
xpcosc, right-click it and select Stop.

The target application on the target PC stops running.

3-66

Parameter Tuning and Inlining Parameters

Parameter Tuning with the MATLAB Interface
You use the MATLAB functions to change block parameters. With these
functions, you do not need to set the Simulink interface to external mode, and
you do not need to connect the Simulink interface with the target application.

You can download parameters to the target application while it is running
or between runs. This feature lets you change parameters in your target
application without rebuilding the Simulink model.

After you download a target application to the target PC, you can change
block parameters using xPC Target functions. This procedure uses the
Simulink model xpcosc.mdl as an example, and assumes you have created
and downloaded the target application for that model. It also assumes that
you have assigned tg to the appropriate target PC.

1 In the MATLAB window, type

+tg

or

tg.start

or

start(tg)

The target PC displays the following message:

System: execution started (sample time: 0.001000)

2 Display a list of parameters. Type either

set(tg,'ShowParameters','on')

or

tg.ShowParameters='on'

The latter command displays a list of properties for the target object.

ShowParameters = on

3-67

3 Signals and Parameters

Parameters =

INDEX VALUE TYPE SIZE
PARAMETER
NAME

BLOCK
NAME

0 1000000 DOUBLE Scalar Gain Gain

1 400 DOUBLE Scalar Gain Gain1

2 1000000 DOUBLE Scalar Gain Gain2

3 0 DOUBLE Scalar
Initial
Condition Integrator

4 0 DOUBLE Scalar Initial
Condition

Integrator1

5 4 DOUBLE Scalar Amplitude Signal
Generator

6 20 DOUBLE Scalar Frequency Signal
Generator

3 Change the gain. For example, to change the Gain1 block, type either

tg.setparam(1,800)

or

setparam(tg,1,800)

As soon as you change parameters, the changed parameters in the target
object are downloaded to the target application. The host PC displays the
following message:

ans =
parIndexVec: 1
OldValues: 400
NewValues: 800

If there is a scope, the plot frame then updates the signals after running
the simulation with the new parameters.

4 Stop the target application. In the MATLAB window, type

3-68

Parameter Tuning and Inlining Parameters

-tg

or

tg.stop

or

stop(tg)

The target application on the target PC stops running, and the target PC
displays messages like the following:

System: execution stopped
minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

Note Method names are case sensitive and need to be complete, but property
names are not case sensitive and need not be complete as long as they are
unique.

Resetting Target Application Parameters to Previous Values
You can reset parameters to preceding target object property values by
using xPC Target methods on the host PC. The setparam method returns a
structure that stores the parameter index, the previous value, and the new
value. If you expect to want to reset parameter values, set the setparam
method to a variable. This variable points to a structure that stores the
parameter index and the old and new parameter values for it.

1 In the MATLAB window, type

pt=tg.setparam(1,800)

The setparam method returns a result like

pt =
parIndexVec: 1
OldValues: 400
NewValues: 800

3-69

3 Signals and Parameters

2 To reset to the previous values, type

setparam(tg,pt.parIndexVec,pt.OldValues)
ans =
parIndexVec: 5
OldValues: 800
NewValues: 100

Parameter Tuning with Simulink External Mode
You use Simulink external mode to connect your Simulink block diagram to
your target application. The block diagram becomes a graphical user interface
to your target application. You set up the Simulink interface in external mode
to establish a communication channel between your Simulink block window
and your target application.

In Simulink external mode, wherever you change parameters in the Simulink
block diagram, the Simulink software downloads those parameters to
the target application while it is running. This feature lets you change
parameters in your program without rebuilding the Simulink model to create
a new target application.

Note Opening a dialog box for a source block causes the Simulink software to
pause. While the Simulink software is paused, you can edit the parameter
values. You must close the dialog box to have the changes take effect and
allow the Simulink software to continue.

After you download your target application to the target PC, you can connect
your Simulink model to the target application. This procedure uses the
Simulink model xpcosc.mdl as an example, and assumes you have created
and downloaded the target application for that model.

1 In the Simulink window, and from the Simulation menu, click External.

A check mark appears next to the menu item External, and Simulink
external mode is activated.

2 In the Simulink block window, and from the Simulation menu, click
Connect to target.

3-70

Parameter Tuning and Inlining Parameters

All of the current Simulink model parameters are downloaded to your
target application. This downloading guarantees the consistency of the
parameters between the host model and the target application.

3 From the Simulation menu, click Start Real-Time Code, or, in the
MATLAB window, type

+tg

or

tg.start

or

start(tg)

The target application begins running on the target PC, and the target
PC displays the following message:

System: execution started (sample time: 0.000250)

4 From the Simulation block diagram, double-click the block labeled Gain1.

The Block Parameters: Gain1 parameter dialog box opens.

3-71

3 Signals and Parameters

5 In the Gain text box, enter 800 and click OK.

As soon as you change a model parameter and click OK, or you click the
Apply button on the Block Parameters: Gain1 dialog box, all the changed
parameters in the model are downloaded to the target application.

6 From the Simulation menu, click Disconnect from Target.

The Simulink model is disconnected from the target application. Now, if you
change a block parameter in the Simulink model, there is no effect on the
target application. Connecting and disconnecting the Simulink interface
works regardless of whether the target application is running or not.

7 In the MATLAB window, type either

stop(tg)

or

-tg

The target application on the target PC stops running, and the target PC
displays the following messages:

3-72

Parameter Tuning and Inlining Parameters

System: execution stopped
minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

Parameter Tuning with a Web Browser
The Parameters pane displays a list of all the tunable parameters in your
model. Row and column indices for vector/matrix parameters are also shown.

After you connect a Web browser to the target PC, you can use the
Parameters page to change parameters in your target application while it is
running in real time:

1 In the left frame, click the Parameters button.

The browser loads the Parameter List pane into the right frame.

If the parameter is a scalar parameter, the current parameter value is
shown in a box that you can edit.

If the parameter is a vector or matrix, there is a button that takes you to
another page that displays the vector or matrix (in the correct shape) and
enables you to edit the parameter.

2 Enter a new parameter value into one or more of the parameter boxes,
and then click the Apply button.

The new parameter values are uploaded to the target application.

Saving and Reloading Application Parameters with
the MATLAB Interface
After you have a set of target application parameter values that you are
satisfied with, you can save those values to a file on the target PC. You can
then later reload these saved parameter values to the same target application.
You can save parameters from your target application while the target
application is running or between runs. This feature lets you save and restore
parameters in your target application without rebuilding the Simulink
model. You save and restore parameters with the target object methods
saveparamset and loadparamset.

The procedures assume that

3-73

3 Signals and Parameters

• You have a target application object named tg.

• You have assigned tg to the appropriate target PC.

• You have a target application downloaded on the target PC.

• You have parameters you would like to save for reuse. See

- “Parameter Tuning with the MATLAB Interface” on page 3-67

- “Parameter Tuning with Simulink External Mode” on page 3-70

- “Parameter Tuning with a Web Browser” on page 3-73

Saving the Current Set of Target Application Parameters
To save a set of parameters to a target application, use the saveparamset
method. The target application can be stopped or running.

1 Identify the set of parameter values you want to save.

2 Select a descriptive filename to contain these values. For example, use the
model name in the filename. You can only load parameter values to the
same target application from which you saved the parameter values.

3 In the MATLAB window, type either

tg.saveparamset('xpc_osc4_param1')

or

saveparamset(tg,'xpc_osc4_param1')

The xPC Target software creates a file named xpcosc4_param1 in the
current directory of the target PC, for example, C:\xpcosc4_param1.

For a description of how to restore parameter values to a target application,
see “Loading Saved Parameters to a Target Application” on page 3-74. For a
description of how to list the parameters and values stored in the parameter
file, see “Listing the Values of the Parameters Stored in a File” on page 3-75.

Loading Saved Parameters to a Target Application
To load a set of saved parameters to a target application, use the
loadparamset method. You must load parameters to the same model from

3-74

Parameter Tuning and Inlining Parameters

which you save the parameter file. If you load a parameter file to a different
model, the behavior is undefined.

This section assumes that you have a parameters file saved from an earlier
run of saveparamset (see “Saving the Current Set of Target Application
Parameters” on page 3-74).

1 From the collection of parameter value files on the target PC, select the one
that contains the parameter values you want to load.

2 In the MATLAB window, type either

tg.loadparamset('xpc_osc4_param1')

or

loadparamset(tg,'xpc_osc4_param1')

The xPC Target software loads the parameter values into the target
application.

For a description of how to list the parameters and values stored in the
parameter file, see “Listing the Values of the Parameters Stored in a File”
on page 3-75.

Listing the Values of the Parameters Stored in a File
To list the parameters and their values, load the file for a target application,
then turn on the ShowParameters target object property.

This section assumes that you have a parameters file saved from an earlier
run of saveparamset (see “Saving the Current Set of Target Application
Parameters” on page 3-74).

1 Ensure that the target application is stopped. For example, type

tg.stop

2 Load the parameter file. For example, type

tg.loadparamset('xpc_osc4_param1');

3-75

3 Signals and Parameters

3 Display a list of parameters. For example, type

tg.ShowParameters='on';

and then type

tg

The MATLAB window displays a list of parameters and their values for
the target object.

Inlined Parameters
This procedure describes how you can globally inline parameters for a model,
then specify which of these parameters you still want to be tunable. It
assumes that you are familiar with how to build target applications (if you
are not, read the xPC Target Getting Started Guide first). After you have
performed this procedure, you will able to tune these parameters.

• “Tuning Inlined Parameters with xPC Target Explorer” on page 3-79

• “Tuning Inlined Parameters with the MATLAB Interface” on page 3-81

The following procedure uses the Simulink model xpcosc.mdl as an example.

1 In the MATLAB Command Window, type

xpcosc

The model is displayed in the Simulink window.

2 Select the blocks of the parameters you want to make tunable. For example,
this procedure makes the signal generator’s amplitude parameter tunable.
Use the variable A to represent the amplitude.

3 Double-click the Signal Generator block and enter A for the Amplitude
parameter. Click OK.

4 In the MATLAB Command Window, assign a constant to that variable.
For example, type

A = 4

3-76

Parameter Tuning and Inlining Parameters

The value is displayed in the MATLAB workspace.

5 In the Simulink window, from the Simulation menu, click Configuration
Parameters.

The Configuration Parameters dialog box for the model is displayed.

6 Click the Optimization node.

7 In the rightmost pane, select the Inline parameters check box.

The Configure button is enabled.

8 Click the Configure button.

The Model Parameter Configuration dialog box is displayed. Note that the
MATLAB workspace contains the constant you assigned to A.

9 Select the line that contains your constant and click Add to table.

3-77

3 Signals and Parameters

The Model Parameter Configuration dialog box appears as follows.

If you have more global parameters you want to be able to tune, add them
also.

10 Click Apply, then click OK.

11 In the Configuration Parameters dialog, click Apply, then OK.

12 If you want, increase the model stop time, or set it to inf.

13 When you are finished, click Apply, then OK, and save the model. For
example, save it as xpc_osc5.mdl.

14 Build and download the model to your target PC.

3-78

Parameter Tuning and Inlining Parameters

You next can use xPC Target Explorer or the MATLAB interface to work
with the tunable parameters.

Tuning Inlined Parameters with xPC Target Explorer
This procedure describes how you can tune inlined parameters through the
xPC Target Explorer. It assumes that you have built and downloaded the
model from the topic “Inlined Parameters” on page 3-76 to the target PC. It
also assumes that the model is running.

1 If you have not yet started xPC Target Explorer, do so now. Be sure it is
connected to the target PC to which you downloaded the xpc_osc5 target
application.

2 To get the list of tunable inlined parameters in the target application,
expand the target application node, then expand the Model Hierarchy
node under the target application node.

Note that the Model Hierarchy node displays a list of signals and an object
called Model Parameters. Model Parameters contains the list of tunable
inlined parameters.

3 To display the tunable parameters, select Model Parameters.

The constant A and its value are shown in the right pane.

4 Double-click the box that contains the tunable parameter A.

The box becomes editable.

3-79

3 Signals and Parameters

5 Enter a new value for the parameter and press Enter.

The box is updated and the Update Parameter button becomes active.

6 To apply the new value, click the Update Parameter button.

7 To verify the updated value, select the signal object associated with A. For
example, select Signal Generator.

3-80

Parameter Tuning and Inlining Parameters

The value of Signal Generator is shown in the right pane.

8 Stop the target application.

Tuning Inlined Parameters with the MATLAB Interface
This procedure describes how you can tune inlined parameters through the
MATLAB interface. It assumes that you have built and downloaded the model
from the topic “Inlined Parameters” on page 3-76 to the target PC. It also
assumes that the model is running.

You can tune inlined parameters using a parameter ID as you would
conventional parameters.

• Use the getparamid function to get the ID of the inlined parameter you
want to tune. For the block_name parameter, leave a blank ('').

• Use the setparam function to set the new value for the inlined parameter.

3-81

3 Signals and Parameters

1 Save the following code in an M-file. For example, change_inlineA.

tg=xpc; %Create xPC Target object
pid=tg.getparamid('','A'); %Get parameter ID of A
if isempty(pid) %Check value of pid.

error('Could not find A');
end
tg.setparam(pid,100); %If pid is valid, set parameter value.

2 Execute that M-file. For example, type

change_inlineA

3 To see the new parameter value, type

tg.showparameters='on'

The tg object information is displayed, including the parameter lines:

NumParameters = 1

ShowParameters = on

Parameters = INDEX VALUE TYPE SIZE PARAMETER NAME BLOCK
NAME

0 100 DOUBLE Scalar A

3-82

4

Booting from a DOS Device

• “DOSLoader Mode” on page 4-2

• “DOSLoader Target Setup” on page 4-7

4 Booting from a DOS Device

DOSLoader Mode

In this section...

“Introduction” on page 4-2
“DOSLoader Mode Overview” on page 4-2
“Restrictions” on page 4-3
“Updating the xPC Target Environment” on page 4-4
“Creating a DOS System Disk” on page 4-6

Introduction
DOSLoader mode allows you to boot a target PC from a device other than
removable media or a dedicated network, such as a hard disk or flash memory.
You can then download a target application from the host PC to the target
PC. After the target PC boots the kernel, it waits for the host computer to
download a real-time application. You can control the target application from
either the host PC or the target PC. See “DOSLoader Mode Overview” on
page 4-2 for further details.

DOSLoader Mode Overview
The following summarizes the sequence of events for DOSLoader mode. For a
detailed step-by-step procedure, see “DOSLoader Target Setup” on page 4-7.

1 As necessary, format a 3.5-inch disk or have available a blank CD.

2 Copy a version of DOS onto this disk and insert this DOS disk into the
host PC disk drive.

3 In the host PC MATLAB Command Window, type xpcexplr.

4 In the xPC Target Explorer xPC Target Hierarchy pane, select a target
PC Configuration node.

5 In the configuration pane, select the DOS Loader tab.

6 Create the following files:

4-2

DOSLoader Mode

• DOS files — Provide your own copy of DOS to boot the target PC. For
example, you can acquire DOS from FreeDOS.

The MathWorks has tested the xPC Target software with FreeDOS Beta
8 (“Nikita”) distribution, MS-DOS (6.0 or higher), PC DOS, and Caldera
OpenDOS.

• autoexec.bat — xPC Target version of this file that calls the
xpcboot.com executable to boot the xPC Target kernel.

• *.rtb— This file contains the xPC Target kernel. It also contains, as
applicable, specifications such as serial or TCP/IP communications and
the IP address of the target PC.

• xpcboot.com —- Contains the xPC Target boot executable. This file
executes an xPC Target application and executes the *.rtb file.

7 Set up the target PC boot device such as a 3.5-inch floppy disk, flash disk,
or a hard disk drive.

8 As necessary, transfer the files to the target PC.

9 Boot the target PC.

When you boot the target PC, the target PC loads DOS, which then calls
the xPC Target autoexec.bat file to start the xPC Target kernel (*.rtb).
The target PC then awaits commands from the host PC.

10 To execute a target application, build and download one from the host PC
to the target PC. DOSLoader mode does not automatically load a target
application to the target PC. The xPC Target application executes entirely
in protected mode using the 32-bit flat memory model.

Note This mode requires that the host PC and target PC communicate either
via an RS-232 serial connection or a TCP/IP network connection.

Restrictions
To use either the DOSLoader mode, your DOS environment must comply
with the following restrictions:

4-3

4 Booting from a DOS Device

• The CPU must execute in real mode.

• While loaded in memory, the DOS partition must not overlap the address
range of a target application.

To satisfy these restrictions,

• Do not use additional memory managers like emm386 or qemm.

• Avoid any utilities that attempt to load in high memory (for example,
himem.sys). If the target PC DOS environment does not use a config.sys
file or memory manager entries in the autoexec.bat file, there should be
no problems when running xpcboot.com.

Updating the xPC Target Environment
You can use the function getxpcenv to see the current selection for
TargetBoot, or you can view this through the xPC Target Explorer window.
Start the MATLAB interface and execute the function

xpcexplr

In the xPC Target Explorer xPC Target Hierarchy pane, select a target PC
Configuration node. You see the boot mode tabs. The choices are

• Boot Floppy — For creating a 3.5-inch target boot disk.

• CD Boot — For creating a boot image that you can burn onto a CD to
create a target boot CD.

• DOS Loader— For invoking the kernel on the target PC from DOS.

4-4

DOSLoader Mode

• Network Boot— For creating a boot image that you can boot from within
a dedicated network.

• Standalone (visible only for xPC Target Embedded Option™) — For
invoking the kernel on the target PC from DOS and automatically starting
the target application without connecting to a host computer. With this
mode, the kernel and the target application are combined as a single
module that is placed on the boot device.

In the Configuration node, select DOS Loader. The xPC Target environment
is updated when you change the value. Create DOSLoader files by clicking
the Create DOS Loader button.

For more detailed information about how to use the xPC Target Explorer
window, see “xPC Target Explorer” in the xPC Target Getting Started Guide.

4-5

4 Booting from a DOS Device

Creating a DOS System Disk
DOSLoader mode allows for booting the target PC from devices other than
disk drives or networks, such as flash disks and hard drives. To use this
mode, you need a minimal DOS system on the boot device. Use the following
DOS command, where drive is the drive that you want to use as the boot
device, such as C:.

sys drive

It is helpful to copy additional DOS utilities to the boot disk, including

• A DOS editor to edit files

• The format program to format a hard disk or flash memory

• The fdisk program to create partitions

• The sys program to transfer a DOS system onto another drive, such as
the hard disk drive

Note xPC Target does not include a DOS license. You must obtain a valid
DOS license for your target PC.

Once configured for booting, you can transfer the DOSLoader files (created
using xpcexplr) to the device. A config.sys file is not necessary. The
autoexec.bat file should be used to boot the xPC Target loader. This is
described in the following sections.

4-6

DOSLoader Target Setup

DOSLoader Target Setup

In this section...

“Introduction” on page 4-7
“Updating Environment Properties and Creating a Boot Disk” on page 4-7
“Copying the Kernel to Flash Memory” on page 4-9
“Creating a Target Application for DOSLoader Mode” on page 4-11
“Creating DOSLoader Files with a Command-Line Interface” on page 4-11

Introduction
DOSLoader mode allows you to copy the xPC Target kernel to the target
flash disk, remove the disk drive, and then boot the xPC Target kernel.
Alternatively, you can also boot the xPC Target kernel from the target PC
3.5 inch disk drive. The target application is still downloaded from the host
PC. Use this mode for applications where an xPC Target host is not easily
accessible.

Updating Environment Properties and Creating a
Boot Disk
The xPC Target software uses the environment properties to determine what
files to create for the various target boot modes.

This procedure assumes you have serial or network communication working
correctly between your host computer and a target PC. It is helpful to
successfully create a target application with the Boot Floppy, CD Boot, or
Network Boot tabs before trying to create a kernel that boots from DOS.

Note If you want to create a boot disk to boot the target PC into DOSLoader
mode, use a 3.5-inch disk. You can use a CD to transfer DOSLoader files to the
target PC, but you cannot create a CD to boot the target in DOSLoader mode.

1 On the host computer, start the MATLAB interface.

4-7

4 Booting from a DOS Device

2 In the MATLAB Command Window, type

xpcexplr

The xPC Target Explorer window opens.

3 In the xPC Target Explorer xPC Target Hierarchy pane, select a target
PC Configuration node.

4 In the configuration pane, select DOS Loader.

5 In the Location field, enter or browse to the directory to contain the xPC
Target files. By default, the directory is current working directory.

6 Click Apply.

7 Click Create DOS Loader.

If you entered a floppy drive (for example, a:) , the software copies the
DOSLoader files to the 3.5-inch disk.

8 If you entered a floppy drive for the Location field, insert a 3.5-inch disk,
and then click OK.

Regardless of the Location entry, the files xpcsgo.rtb (serial) or
xpctgo.rtb (TCP/IP), xpcboot.com, and autoexec.bat are created.

If you enter a floppy drive, these files are written to the 3.5-inch disk. If
you enter a local directory other than a floppy drive, the software creates
these files in that directory.

With DOSLoader mode, the correct *.rtb file is created according to the
options specified in the following table.

xPC Target
Environment

HostTargetComm:
RS-232

HostTargetComm:
TCP/IP

TargetScope:
Disabled

xpcsto.rtb xpctto.rtb

TargetScope:
Enabled

xpcsgo.rtb xpctgo.rtb

4-8

DOSLoader Target Setup

Note Some target PCs might not boot if you try to boot them with a boot
disk configured for DOSLoader mode and a maximum model size of 16
MB. If you encounter this problem, create a new boot disk with a different
configuration, for example DOSLoader mode and a maximum model size of
1 MB or 4 MB.

Note that the autoexec.bat file should contain at least the following line:

xpcboot xxx.rtb

where xxx.rtb is the file described in the table above. Inspect this
autoexec.bat file to confirm this.

9 If you want to boot the target PC from the 3.5-inch disk,

a Remove the 3.5-inch disk from the host PC.

b Put that disk into the target PC disk drive.

c Reboot the target PC. The DOS is booted from the target boot disk and
the autoexec.bat files, resulting in the automatic execution of the xPC
Target loader. From this point onward, the CPU runs in protected mode
and DOS is discarded.

Otherwise, if you want to boot the target PC from flash memory instead of
the 3.5-inch disk, see “Copying the Kernel to Flash Memory” on page 4-9 for a
description of how to copy the kernel to flash memory. The same procedure
works with flash disks and other boot devices.

Note You can repeat this procedure as necessary. However, the xPC Target
product does not include DOS licenses. You must purchase valid DOS licenses
for your target PCs from the supplier of your choice.

Copying the Kernel to Flash Memory
One method for transferring the kernel files from a host PC to a target PC is
to use an external 3.5-inch disk drive or CD disk drive.

4-9

4 Booting from a DOS Device

After you create a disk with the kernel files on a host PC, you can copy the
kernel files from the 3.5-inch disk or CD to the flash disk. See “Updating
Environment Properties and Creating a Boot Disk” on page 4-7.

1 If there is a 3.5-inch disk or CD, remove it. On the target PC, press the
Reset button.

2 Boot into the DOS prompt. For example, you can create a DOS disk and
boot the target PC off this disk.

The boot process is stopped and a DOS prompt is displayed.

3 Insert the 3.5-inch disk or CD with the xPC Target kernel into the target
PC external disk drive.

4 Create a directory to contain the xPC Target files. For example, type

mkdir C:\xpcfiles

5 Copy files to C:\xpcfiles. For example, type

copy A:\xpcsgo.rtb C:\xpcfiles
copy A:\xpcboot.com C:\xpcfiles
copy A:\autoexec.bat C:\xpcfiles

6 If you want the kernel to run when you press the Reset button on your
target PC, save a copy of the file C:\autoexec.bat to a backup file, such
as C:\autoexec_back.wrk.

7 Edit the file C:\autoexec.bat to include the following lines. Adding these
commands to C:\autoexec.bat directs the system to load the kernel from
C:\xpcfiles.

cd C:\xpcfiles
xpcboot xpcsgo.rtb

Note The file C:\autoexec.bat includes the files you want the system to
execute when the system starts up.

8 Remove the disk, and then, on the target PC, press the Reset button.

4-10

DOSLoader Target Setup

Creating a Target Application for DOSLoader Mode
For DOSLoader mode, a target application is created on a host PC and
downloaded to your target PC.

After you set the Simulink and Real-Time Workshop parameters for code
generation with the xPC Target software in your Simulink model, you can
use the xPC Target environment with DOSLoader mode to create a target
application.

1 In the MATLAB window, type the name of a Simulink model. For example,
type

xpc_osc3

A Simulink window opens with the model.

2 From the Tools menu, point to Real-Time Workshop, and then click
Build Model.

The Real-Time Workshop and xPC Target products create a target application
and download it to your target.

Creating DOSLoader Files with a Command-Line
Interface
You use DOSLoader files to load and run the xPC Target kernel. After you
make changes to the xPC Target environment properties, you need to create
or update the kernel (DOSLoader files).

To create DOSLoader files for the current xPC Target environment, use the
following procedure:

1 In the MATLAB window, type

xpcgetenv

2 Ensure that the following xPC Target properties are set as follows:

• TargetBoot — DOSLOader

• DOSLoaderLocation— Your host PC DOSLoader files location

4-11

4 Booting from a DOS Device

3 If these properties are not set with the correct values, use the setxpcenv
function to set them. For example

setxpcenv('TargetBoot','DOSLoader')
setxpcenv(DOSLoaderLocation,'c:\work\xpc\dosloader')
updatexpcenv

4 In the MATLAB window, type

xpcbootdisk

The xPC Target software displays the following message and creates the
DOSLoader files.

Current boot mode: DOSLoader
xPC Target DOS Loader files are successfully created

5 Transfer the DOSLoader files as described in “Copying the Kernel to Flash
Memory” on page 4-9.

4-12

5

Embedded Option

The xPC Target Embedded Option product allows you to boot the target PC
from a device other than a 3.5-inch disk or CD drive or network boot image,
such as a hard disk or flash memory. It also allows you to deploy stand-alone
applications on the target PC independent of the host PC. This chapter
includes the following sections:

• “Introduction” on page 5-2

• “xPC Target Embedded Option Modes” on page 5-3

• “Embedded Option Setup” on page 5-7

• “Stand-Alone Target Setup” on page 5-10

5 Embedded Option

Introduction
The xPC Target Embedded Option software allows you to boot the xPC Target
kernel from a 3.5-inch disk drive and other devices, including a flash disk or a
hard disk drive. By using the xPC Target Embedded Option software, you
can configure a target PC to automatically start execution of your embedded
application for continuous operation each time the system is booted. You
can use this capability to deploy your own real-time applications on target
PC hardware. You can also control the target application using custom GUIs
or the Web browser interface when deploying the application with the xPC
Target Embedded Option software. You can deploy GUIs that you develop
with the xPC Target API and the COM API on any host Microsoft® Windows®
system without MATLAB software.

The xPC Target Embedded Option software has Standalone mode. This mode
bundles the kernel and target application into one entity that you can copy
onto a device such as the target PC hard drive. This mode allows the target
PC to run as a stand-alone PC with the target application already loaded.
You can control the real-time application with the command-line interface
using a keyboard on the target PC.

This feature uses the xPC Target API with any programming environment,
or the xPC Target COM API with any programming environment, such as
Visual Basic®, that can use COM objects. See the xPC Target API Guide for
further information.

5-2

xPC Target Embedded Option™ Modes

xPC Target Embedded Option Modes

In this section...

“Introduction” on page 5-3
“Standalone Mode Overview” on page 5-4
“Restrictions” on page 5-6

Introduction
The xPC Target Embedded Option software extends the xPC Target base
product with the Standalone mode

Use this mode to load the target PC with both the xPC Target kernel and a
target application. This mode of operation can start the kernel on the target
PC from a flash disk or hard disk. After starting the kernel on the target PC,
Standalone mode also automatically starts the target application that you
loaded with the kernel. This configuration provides complete stand-alone
operation. Standalone mode eliminates the need for a host PC and allows
you to deploy real-time applications on target PCs. See “Standalone Mode
Overview” on page 5-4 for further details.

Regardless of the mode, you initially boot your target PC with DOS from any
boot device, then the xPC Target kernel is started from DOS. The xPC Target
software only needs DOS to boot the target PC and start the xPC Target
kernel. DOS is no longer available on the target PC unless you reboot the
target PC without starting the xPC Target kernel.

Note, you cannot build a 16 MB target application to run in Standalone mode.

Note The xPC Target Embedded Option software requires a boot device with
DOS installed. It otherwise does not have any specific requirements as to the
type of boot device. You can boot the xPC Target software from any device
that has DOS installed. DOS software and license are not included with the
xPC Target or xPC Target Embedded Option software.

5-3

5 Embedded Option

Without the xPC Target Embedded Option software, you can only download
real-time applications to the target PC after booting the target PC from an
xPC Target boot disk or network boot image.

The following are some instances where you might want to use the xPC
Target Embedded Option product. You might have one of these situations if
you deploy the target PC in a small or rugged environment.

• Target PC does not have a 3.5-inch disk or CD drive.

• The Target PC 3.5-inch or CD disk drive must be removed after setting
up the target system.

• You do not have a dedicated network to boot the target PC from the host PC.

Standalone Mode Overview
The primary purpose of the Standalone mode is to allow you to use a target
PC as a stand-alone system. Standalone mode enables you to deploy control
systems, DSP applications, and other systems on PC hardware for use in
production applications using PC hardware. Typically these production
applications are found in systems where production quantities are low to
moderate.

The following summarizes the sequence of events for Standalone mode. For a
detailed step-by-step procedure, see “Stand-Alone Target Setup” on page 5-10.

1 Ensure that the target PC has an appropriate version of DOS on the target
PC hard drive. The MathWorks has tested the xPC Target software with
FreeDOS Beta 8 (“Nikita”) distribution, MS-DOS (6.0 or higher), PC DOS,
and Caldera OpenDOS.

2 Create a standard boot disk and boot the target PC.

3 From the host PC MATLAB window, type xpcexplr.

4 In the xPC Target Explorer xPC Target Hierarchy pane, select a target
PC Configuration node.

5 In the configuration node, select the Standalone tab.

6 Click the Enable Standalone Mode check box.

5-4

xPC Target Embedded Option™ Modes

7 Select and build a model.

This step creates a directory in the current working directory named
modelname_xpc_emb.

8 Copy the contents of model_name_emb to the target PC hard drive. The
target PC hard drive should now contain the following files:

• DOS files — Provide your own copy of DOS to boot the target PC (see
step 1).

• *.rtb— This file contains the xPC Target kernel. It also contains, as
applicable, options such as serial or TCP/IP communications and the IP
address of the target PC.

• xpcboot.com— This file executes loads and executes the *.rtb file.

• autoexec.bat — xPC Target version of this file that calls the
xpcboot.com executable to boot the xPC Target kernel.

9 Boot the target PC.

When you boot the target PC, the target PC loads DOS, which then calls
the xPC Target autoexec.bat file to start the xPC Target kernel (*.rtb)
and associated target application. If you set up the boot device to run the
xPC Target autoexec.bat file upon startup, the target application starts
executing as soon as possible. The xPC Target application executes entirely
in protected mode using the 32-bit flat memory model.

Note This mode does not require any connection between the host PC and
target PC.

If you do not want to view signals on the target PC, you do not need a monitor
for the target PC, nor do you need to add target scopes to the application.
In this instance, your xPC Target system operates as a black box without
a monitor or keyboard. Stand-alone applications are automatically set to
continue running for an infinite time duration or until the target computer
is turned off.

5-5

5 Embedded Option

Restrictions
To use the Standalone mode, your DOS environment must comply with the
following restrictions:

• The CPU must execute in real mode.

• While loaded in memory, the DOS partition must not overlap the address
range of a target application.

To satisfy these restrictions,

• Do not use additional memory managers like emm386 or qemm.

• Avoid any utilities that attempt to load in high memory (for example,
himem.sys). If the target PC DOS environment does not use a config.sys
file or memory manager entries in the autoexec.bat file, there should be
no problems when running xpcboot.com.

5-6

Embedded Option Setup

Embedded Option Setup

In this section...

“Updating the xPC Target Environment” on page 5-7
“Creating a DOS System Disk” on page 5-9

Updating the xPC Target Environment
After the xPC Target Embedded Option software has been correctly installed,
the xPC Target environment, visible through xpcexplr or getxpcenv,
contains two additional property choices for Standalone, in addition to the
default BootDisk that you normally use with the xPC Target software.

It is assumed that the xPC Target environment is already set up and working
properly with the xPC Target Embedded Option product enabled. If you have
not already done so, confirm this now.

You can use the function getxpcenv to see the current selection for
TargetBoot, or you can view this through the xPC Target Explorer window.
Start the MATLAB interface and execute the function

xpcexplr

In the xPC Target Explorer xPC Target Hierarchy pane, select a target PC
Configuration node. You see the boot mode tabs. The choices are

• Boot Floppy — For creating a 3.5-inch target boot disk.

• CD Boot — For creating a boot image that you can burn onto a CD for
target boot CD.

• DOS Loader— For invoking the kernel on the target PC from DOS.

• Standalone — For invoking the kernel on the target PC from DOS and
automatically starting the target application without connecting to a host

5-7

5 Embedded Option

computer. With this mode, the kernel and the target application are
combined as a single module that is placed on the boot device.

• Network Boot— For creating a boot image that you can boot from within
a dedicated network.

In the Configuration node, select Standalone. The xPC Target environment
is updated, but you do not create a new target boot disk. Upon building
your next real-time application, all necessary xPC Target files are saved to
a subdirectory below your current working directory. This subdirectory is
named with your model name with the string '_xpc_emb' appended, such
as xpcosc_xpc_emb.

For more detailed information about how to use the xPC Target Explorer
window, see “xPC Target Explorer” in the xPC Target Getting Started Guide.

5-8

Embedded Option Setup

Creating a DOS System Disk
When using Standalone mode, you must first boot your target PC with DOS.
You can use Standalone mode from a boot device such as flash disk or a
hard disk drive.

To boot DOS with a target boot disk, a minimal DOS system is required on
the boot disk. With DOS, you can create a DOS boot disk using the command

sys A:

Note The xPC Target Embedded Option product does not include a DOS
license. You must obtain a valid DOS license for your target PC.

It is helpful to copy additional DOS utilities to the boot disk, including

• A DOS editor to edit files

• The format program to format a hard disk or flash memory

• The fdisk program to create partitions

• The sys program to transfer a DOS system onto another drive, such as
the hard disk drive

A config.sys file is not necessary. The autoexec.bat file should be created
to boot the loader or a stand-alone xPC Target application automatically. This
is described in the following sections.

5-9

5 Embedded Option

Stand-Alone Target Setup

In this section...

“Before You Start” on page 5-10
“Updating Environment Properties” on page 5-11
“Creating a Kernel/Target Application” on page 5-11
“Copying the Kernel/Target Application to the Target PC Flash Disk” on
page 5-12

Before You Start
Standalone mode combines the target application with the kernel and boots
them together on the target PC from the hard drive (or, alternatively, flash
memory). The host PC does not need to be connected to the target PC.

Before you start, set up your system as described.

1 Create a standard boot disk or network boot image for serial or network
communication (depending on your configuration). You will need to do
this so that you can copy your Standalone mode files to the target PC. See
“Serial Communication”, “Network Communication”, “Booting Target PCs
from Boot Floppy Disk”, and “xPC Target Boot Options” in the “Installation
and Configuration” chapter of the xPC Target Getting Started Guide.

2 Boot the target PC.

3 Ensure that your target PC hard drive is a serial ATA (SATA) or parallel
ATA (PATA)/Integrated Device Electronics (IDE) drive, configured as
a primary master. The xPC Target product supports file systems of
type FAT-12, FAT-16, or FAT-32. Ensure that the hard drive is not
cable-selected and that the BIOS can detect it.

After you create the stand-alone target application files, you will copy them
to the target PC hard drive using the File Transfer Protocol (FTP) functions
of the xPC Target file system. You do not need to be familiar with the xPC
Target file system before you start, but for further information on this feature,
see Chapter 9, “Working with Target PC Files and File Systems”.

5-10

Stand-Alone Target Setup

Updating Environment Properties
The xPC Target software uses the environment properties to determine what
files to create for the various target boot modes.

This procedure assumes you have serial or network communication working
correctly between your host computer and a target PC.

1 On the host computer, start the MATLAB interface.

2 In the MATLAB window, type

xpcexplr

The xPC Target Explorer window opens.

3 In the xPC Target Explorer xPC Target Hierarchy pane, select a target
PC Configuration node.

4 Click the Standalone tab.

The xPC Target software updates the environment properties, and the
build process is ready to create a stand-alone kernel/target application. See
“Creating a Kernel/Target Application” on page 5-11. For Standalone mode,
you do not create an xPC Target boot disk or network boot image. Instead,
you copy files created from the build process to the target PC hard drive.

Creating a Kernel/Target Application
Use the xPC Target software with Standalone mode to create a combined
kernel and target application with utility files. A combined kernel and target
application allows you to disconnect your target PC from a host PC and run
stand-alone applications.

After you set the Simulink and Real-Time Workshop parameters for code
generation with the xPC Target software in your Simulink model, you can use
the xPC Target software with Standalone mode to create a target application:

1 In the MATLAB window, type the name of a Simulink model. For example,
type

xpc_osc3

5-11

5 Embedded Option

A Simulink window opens with the model.

2 From the Tools menu, point to Real-Time Workshop, and then click
Build Model.

Real-Time Workshop and xPC Target software create a directory
xpc_osc3_xpc_emb with the following files:

• autoexec.bat— This file is automatically invoked by DOS. It then runs
xpcboot.com and the *.rtb file.

• xpc_osc3.rtb — This image contains the xPC Target kernel and your
target application.

• xpcboot.com — This file is a static file that is part of the xPC Target
Embedded Option software.

Refer to “Copying the Kernel/Target Application to the Target PC Flash Disk”
on page 5-12 for a description of how to transfer these files to the target PC.

Note If the size of the compiled target application (DLM) exceeds the
Maximum model size you selected in xPC Target Explorer, the software will
generate an error during the build process.

Copying the Kernel/Target Application to the Target
PC Flash Disk
You build a target application on a host PC using the Real-Time Workshop
and xPC Target products, and a C/C++ compiler. One method for transferring
the files from the host PC to a target PC is to use the FTP functions of the
xPC Target file system.

After you build a stand-alone application on a host PC, you can copy files from
the host PC to the target PC hard drive or flash disk. If you have not already
created the necessary files, see “Creating a Kernel/Target Application” on
page 5-11.

1 Ensure that your target PC is still booted from a target PC boot disk.

5-12

Stand-Alone Target Setup

2 In the MATLAB Command Window, change directory on the host computer
to the directory that contains the kernel/target application files.

3 Create the directory C:\xpcfiles and copy files to that directory. For
example, type

f=xpctarget.ftp
f.mkdir('xpcfiles')
f.cd('xpcfiles')
f.put('autoexec.bat')
f.put('xpcboot.com')
f.put('xpc_osc3.rtb')

4 If you want your stand-alone application to run when you reboot your target
PC, remove the 3.5-inch disk or CD from the target PC, reboot the target
PC, and bring up the DOS prompt. For example, if you see the message for
selecting the operating system to start, select Microsoft Windows.

Note If the target PC that you want to boot in Standalone mode was
previously booted from the network boot image, selecting the Enable
Standalone Mode check box should disable the network boot capability.

The boot process is stopped and a DOS prompt is displayed.

5 At the DOS prompt, save a copy of the target PC file C:\autoexec.bat to
a backup file, such as C:\autoexec_back.wrk.

6 Edit the target PC file C:\autoexec.bat to include the following lines.
Adding these commands to C:\autoexec.bat directs the system to execute
the autoexec.bat file located in C:\xpcfiles.

cd C:\xpcfiles
autoexec

5-13

5 Embedded Option

Note Do not confuse C:\xpcfiles\autoexec.bat with C:\autoexec.bat.
The file C:\xpcfiles\autoexec.bat includes the command xpcboot.com
to start the xPC Target kernel and stand-alone application. The file
C:\autoexec.bat includes the files you want the system to execute when
the system starts up.

7 Reboot the target PC.

8 The sequence of calls during the boot process is

a C:\autoexec.bat

b C:\xpcfiles\autoexec.bat

c C:\xpcfiles\xpcboot.com

d C:\xpcfiles\<application>.rtb

The stand-alone target application should now be running on the target PC.

5-14

6

Software Environment and
Demos

• “Using Environment Properties and Functions” on page 6-2

• “xPC Target Demos” on page 6-9

6 Software Environment and Demos

Using Environment Properties and Functions

In this section...

“Introduction” on page 6-2
“Getting a List of Environment Properties for Default Target PCs” on
page 6-2
“Changing Environment Properties with xPC Target Explorer” on page 6-3
“Changing Environment Properties with a Command-Line Interface for
Default Target PCs” on page 6-7

Introduction
The xPC Target environment defines the connections and communication
between the host and target computers. It also defines the build process
for a real-time application. You can define the xPC Target environment
through either the MATLAB interface or xPC Target Explorer. The xPC
Target environment provides a number of demos that help you understand
the product.

Refer to the function getxpcenv to list the environment variables for the
default target PC environment. See Chapter 7, “Working with Target PC
Environments” for a description of how you can manage multiple target PC
environments through the MATLAB interface.

To enter properties specific to your model and its build procedure, see
“Entering the Real-Time Workshop Parameters” in the xPC Target Getting
Started Guide. These properties are saved with your Simulink model.

Getting a List of Environment Properties for Default
Target PCs
To use the xPC Target functions to change environment properties, you need
to know the names and allowed values of these properties. Use the following
procedure to get a list of the property names, their allowed values, and their
current values:

1 In the MATLAB Command Window, type

6-2

Using Environment Properties and Functions

setxpcenv

The MATLAB interface displays a list of xPC Target environment
properties and the allowed values. For a list of the properties, see the
function getxpcenv.

2 Type

getxpcenv

The MATLAB interface displays a list of xPC Target environment
properties and the current values.

Alternatively, you can use the xPC Target Explorer window to view and
change environment properties.

Changing Environment Properties with xPC Target
Explorer
The xPC Target software lets you define and change environment properties.
These properties include the path to the C/C++ compiler, the host PC COM
port, the logging buffer size, and many others. Collectively these properties
are known as the xPC Target environment.

To change an environment property using the xPC Target GUI, xPC Target
Explorer, use the following procedure:

1 In the MATLAB window, type

xpcexplr

6-3

6 Software Environment and Demos

The MATLAB interface opens the xPC Target Explorer window.

Note the contents of the left pane. This is the xPC Target Hierarchy
pane.

This pane contains all the objects in your xPC Target hierarchy. As you
add objects to your system, xPC Target Explorer adds their corresponding
nodes to the xPC Target Hierarchy pane. The most important node is
the HostPC node. It represents the host PC. The most important node is
the TargetPC node. Each time you add a target PC node to xPC Target
Explorer, a corresponding node is added to the xPC Target Hierarchy
pane, starting with TargetPC1 and incrementing with the addition of each
new target PC node.

The right pane displays information about the item selected in the left
pane. This pane also displays xPC Target environment properties for the
HostPC and TargetPC nodes. You edit these properties in the right pane.

To change the size of the left or right pane, select and move the divider
between the panes left or right.

6-4

Using Environment Properties and Functions

The Configuration node under the Target PC node has the target
PC-specific configuration pane. If your license does not include the xPC
Target Embedded Option product, you can choose Boot Floppy, CD Boot,
DOS Loader, or Network Boot. With the xPC Target Embedded Option
license, you have the additional choice of Standalone.

2 Change properties in the environment in the right pane by entering new
property values in the text boxes or choosing items from the lists.

xPC Target Explorer applies changes to the environment properties as soon
as you make them in the right pane.

To change environment properties for target PCs, see “Configuring
Environment Parameters for Target PCs” on page 6-5.

Configuring Environment Parameters for Target PCs
You can optionally configure the environment parameters for the target PC
node in your xPC Target system. This section assumes that

• You have already added target PC nodes to your system.

• You have already configured the communication parameters between the
host PC and the target PC.

Note In general, the default values of these parameters are sufficient for
you to use the xPC Target software.

1 In the xPC Target Explorer, expand a target PC node.

A Configuration node appears. Under this are nodes for Communication,
Settings, and Appearance. The parameters for the target PC node are
grouped in these categories.

2 Select Settings.

The Settings Component pane appears to the right.

3 In the Target RAM size (MB) field, enter

6-5

6 Software Environment and Demos

• Auto — The target kernel automatically attempts to determine the
amount of memory.

• Manual— The amount of RAM, in MB, installed on the target PC.

This field defines the total amount of installed RAM in the target PC.
The RAM is used for the kernel, target application, data logging, and
other functions that use the heap.

4 From the Maximum model size list, select either 1 MB, 4 MB, or 16
MB. Choosing the maximum model size reserves the specified amount
of memory on the target PC for the target application. The remaining
memory is used by the kernel and by the heap for data logging. Note that
this parameter is only available for Standalone mode. You cannot specify a
maximum model size for Boot Floppy, DOSLoader, or Network Boot modes.
These modes allow the loading of arbitrarily-sized target applications.

Note You cannot build a 16 MB target application to run in Standalone
mode.

5 By default, the Enable secondary IDE check box is not selected. Select
this check box only if you want to use the disks connected to a secondary
IDE controller. If you do not have disks connected to the secondary IDE
controller, do not select this check box.

6 By default, the Target PC is a 386/486 check box is not selected. You
must select this check box if your target PC has a 386 or 486 compatible
processor. If your target PC has a Pentium or higher compatible processor,
selecting this check box will slow the performance of your target PC.

7 In the xPC Target Hierarchy pane, select Appearance.

The Appearance Component pane appears to the right.

8 From the Target scope list, select either Enabled or Disabled. The
property Target scope is set by default to Enabled. If you set Target
scope to Disabled, the target PC displays information as text. To use
all the features of the target scope, you also need to install a keyboard
on the target PC.

6-6

Using Environment Properties and Functions

9 Set the Target scope property to Enabled.

Changing Environment Properties with a
Command-Line Interface for Default Target PCs
The xPC Target software lets you define and change different properties.
These properties include the path to the C/C++ compiler, the host COM port,
the logging buffer size, and many others. Collectively these properties are
known as the xPC Target environment.

You can use the command-line functions to write an M-file script that accesses
the environment settings according to your own needs. For example, you
could write an M-file that switches between two targets.

The following procedure shows how to change the COM port property for
your host PC from COM1 to COM2:

1 In the MATLAB window, type

setxpcenv('RS232HostPort','COM2')

The up-to-date column shows the values that you have changed, but have
not updated.

HostTargetComm
RS232HostPort
RS232Baudrate

:RS232
:COM1
:115200

up to date
COM2
up to date

Making changes using the function setxpcenv does not change the current
values until you enter the update command.

2 In the MATLAB window, type

updatexpcenv

The environment properties you changed with the function setxpcenv
become the current values.

6-7

6 Software Environment and Demos

HostTargetComm
RS232HostPort
RS232Baudrate

:RS232
:COM2
:115200

up to date
up to date
up to date

6-8

xPC Target™ Demos

xPC Target Demos

In this section...

“Introduction” on page 6-9
“To Locate or Edit a Demo Script” on page 6-11

Introduction
The xPC Target demos are used to demonstrate the features of the xPC Target
product. They are also M-file scripts that you can view to understand how to
write your own scripts for creating and testing target applications.

There are two categories of xPC Target demos, general applications and
drivers. The following lists the general application demos.

Description Filename

Real-time parameter tuning and data logging Parameter Tuning and
Data Logging

Freerun display mode of anxPC Target scope
of type host

Signal Tracing With a
Host Scope in Freerun
Mode

A software triggered xPC Target scope of type
host

Signal Tracing Using
Software Triggering

A signal triggered xPC Target scope of type host Signal Tracing Using
Signal Triggering

A scope triggered xPC Target scope of type host Signal Tracing Using
Scope Triggering

Signal tracing with an xPC Target scope of type
target

Signal Tracing With a
Target Scope

Pre- and posttriggering of an xPC Target scope
of type host

Pre- and Post-Triggering
of a Host Scope

Time- and value-equidistant data logging Time- and
Value-Equidistant Data
Logging

6-9

6 Software Environment and Demos

Description Filename

Logging signal data to a file on the target PC Data Logging With a File
Scope

Frame signal processing

Note This demo requires Signal Processing
Blockset™ software.

Frame Signal Processing

xPC Target software as a real-time spectrum
analyzer

Spectrum Analyzer

The Driver demos category contains demos for a number of driver applications,
including:

• Analog and digital I/O

• ARINC 429

• Asynchronous events

• CAN

• Digital signal processing

• MIL-STD-1553

• RS-232

• Raw Ethernet

• Shared/reflective memory

• UDP

Note Because these demos illustrate the use of driver blocks in an xPC
Target environment, you might need appropriate hardware to properly run
these demos.

6-10

xPC Target™ Demos

You can access xPC Target general application and driver demos through the
MATLAB Command Window Demos tab. In this tab, double-click Links and
Targets and then select xPC Target to list the available demo categories.

To Locate or Edit a Demo Script

1 In the MATLAB Command Window, type

which scfreerundemo

The MATLAB interface displays the location of the M-file.

D:\MATLAB\toolbox\rtw\targets\xpc\xpcdemos\scfreerundemo.m

2 Type

edit scfreerundemo

The MATLAB interface opens the M-file in a MATLAB editing window.

6-11

6 Software Environment and Demos

6-12

7

Working with Target PC
Environments

7 Working with Target PC Environments

Target Environment Command-Line Interface

In this section...

“Creating Target PC Environment Object Containers” on page 7-2
“Displaying Target PC Environment Object Property Values” on page 7-2
“Setting Target PC Environment Collection Object Properties” on page 7-3
“Adding Target PC Environment Collection Objects” on page 7-4
“Removing Target PC Environment Collection Objects” on page 7-4
“Getting Target PC Environment Object Names” on page 7-4
“Changing Target PC Environment Object Defaults” on page 7-5
“Working with Particular Target PC Object Environments” on page 7-5

Creating Target PC Environment Object Containers
xpctarget.targets is a container that manages target PC environment
collection objects. To create an object container of type xpctarget.targets,
use the constructor command xpctarget.targets. For example, the following
creates a tgs object. In the MATLAB window, type

tgs = xpctarget.targets

The resulting target PC object container is tgs (target PC environment
collection object) through which you can manage target PC environment
objects.

Displaying Target PC Environment Object Property
Values
To display the properties of a target PC environment collection object, use the
target PC object container method get. You can use either a method syntax
or an object property syntax.

The syntax get(env_collection_object) can be replaced by

env_collection_object.get

7-2

Target Environment Command-Line Interface

In the MATLAB window, type

tgs.get
CCompiler: 'VisualC'

CompilerPath: 'c:\Microsoft Visual Studio'
DefaultTarget: [1x1 xpctarget.env]

NumTargets: 2

To display the value of particular target PC environment collection object
property, use the syntax get(env_collection_object, property_name) or
env_collection_object.property_name.

In the MATLAB window, type

tgs.CCompiler
ans =
VisualC

Setting Target PC Environment Collection Object
Properties
To set the properties of a target PC environment collection object, use the
target PC environment collection object method set. You can use either a
method syntax or an object property syntax.

The syntax set(env_collection_object, property_name) can be replaced
by

env_collection_object.property_name=new_property_value

To change the compiler specification, in the MATLAB window, type

tgs.CCompiler=Watcom
tgs.CompilerPath=c:\Watcom

Note that if you change the compiler type (CCompiler), you must also change
the compiler path (CompilerPath).

To change the 3.5-inch drive specification from a: to b:, type

tgs.FloppyDrive='b:'

7-3

7 Working with Target PC Environments

Adding Target PC Environment Collection Objects
To add a target PC environment collection object, use the target PC
environment collection object method add. In the MATLAB window, type

tgs.Add

Check that an additional target PC environment collection object has been
added. Type

tgs.get
CCompiler: 'VisualC'

CompilerPath: 'c:\Microsoft Visual Studio'
DefaultTarget: [1x1 xpctarget.env]

NumTargets: 3

Removing Target PC Environment Collection Objects
To delete a target PC environment collection object, use the environment
collection object method, Remove, of the tgs object. In the MATLAB window,
type

tgs.Remove('TargetPCName')

Getting Target PC Environment Object Names
By default, each time you add a target PC environment object, xPC Target
names that object with the string TargetPCN, where N increments with each
subsequent target PC environment object with that base name.

To get a target PC environment object, use the target PC environment
collection object method getTargetNames. Type

tgs.getTargetNames
ans =

'TargetPC1'
'TargetPC2'
'TargetPC3'

You can change a target PC environment object name through the xPC
Target Explorer, or programmatically by setting the Name property of the
environment object.

7-4

Target Environment Command-Line Interface

Changing Target PC Environment Object Defaults
By default, the first target PC environment object is the default one.
Functions such as getxpcenv and setxpcenv operate only on the default
target PC environment object.

To make another environment object be the default one, use the target PC
environment collection object method makeDefault. Type

tgs.makeDefault('TargetPC2')

Working with Particular Target PC Object
Environments
To manage the properties of a particular target PC object environment, use the
target PC object collection environment method Item. This method retrieves
an xPC Target environment object from the xpctarget.targets class. You
can then assign this object to a variable and manipulate that object. Type

env2=tgs.Item('TargetPC2')

env2 is now the target environment object for TargetPC2.

If you want to work with the default target PC object environment, use the
DefaultTarget property. For example,

env=tgs.DefaultTarget

With the object variables, you can manage the target PC environment object
properties. For example, to get the object properties, type

env2.get
Name: 'TargetPC2'

HostTargetComm: 'TcpIp'
TargetRAMSizeMB: 'Auto'

MaxModelSize: '1MB'
TargetScope: 'Enabled'
TargetBoot: 'BootFloppy'

EmbeddedOption: 'Enabled'
SecondaryIDE: 'off'

RS232HostPort: 'COM1'
RS232Baudrate: '115200'

7-5

7 Working with Target PC Environments

TcpIpTargetAddress: '222.222.222.222'
TcpIpTargetPort: '22222'
TcpIpSubNetMask: '255.255.255.255'

TcpIpGateway: '255.255.255.255'
TcpIpTargetDriver: 'I82559'

TcpIpTargetBusType: 'PCI'
TcpIpTargetISAMemPort: '0x300'

TcpIpTargetISAIRQ: '5'

Using the dot notation, change the properties as necessary. For example, to
change the IP address of TargetPC2 to 192.168.0.10, the subnet mask to
255.255.255.0, type

env2.TcpIpTargetAddress='192.168.0.10'
env2.TcpIpSubNetMask='255.255.255.0'

To check your changes, type

env2.get
Name: 'TargetPC2'

HostTargetComm: 'TcpIp'
TargetRAMSizeMB: 'Auto'

MaxModelSize: '1MB'
TargetScope: 'Enabled'
TargetBoot: 'BootFloppy'

EmbeddedOption: 'Enabled'
SecondaryIDE: 'off'

RS232HostPort: 'COM1'
RS232Baudrate: '115200'

TcpIpTargetAddress: '192.168.0.10'
TcpIpTargetPort: '22222'
TcpIpSubNetMask: '255.255.255.0'

TcpIpGateway: '255.255.255.255'
TcpIpTargetDriver: 'I82559'

TcpIpTargetBusType: 'PCI'
TcpIpTargetISAMemPort: '0x300'

TcpIpTargetISAIRQ: '5'

7-6

Target Environment Command-Line Interface

Alternatively, you can type

env.TcpIpTargetPort
ans =
22222
env2.TcpIpTargetAddress
ans =
192.168.0.10

7-7

7 Working with Target PC Environments

7-8

8

Using the Target PC
Command-Line Interface

You can interact with the xPC Target environment through the target
PC command window. The xPC Target software provides a limited set of
commands that you can use to work with the target application after it
has been loaded to the target PC, and to interface with the scopes for that
application.

8 Using the Target PC Command-Line Interface

Target PC Command-Line Interface

In this section...

“Introduction” on page 8-2
“Using Target Application Methods on the Target PC” on page 8-2
“Manipulating Target Object Properties from the Target PC” on page 8-3
“Manipulating Scope Objects from the Target PC” on page 8-4
“Manipulating Scope Object Properties from the Target PC” on page 8-5
“Aliasing with Variable Commands on the Target PC” on page 8-6

Introduction
This interface is useful with stand-alone applications that are not connected
to the host PC. You can type commands directly from a keyboard on the target
PC. As you start to type at the keyboard, a command window appears on
the target PC screen.

For a complete list of target PC commands, refer to “Target PC Commands”
on page 15-2

Using Target Application Methods on the Target PC
The xPC Target software uses an object-oriented environment on the host PC
with methods and properties. While the target PC does not use the same
objects, many of the methods on the host PC have equivalent target PC
commands. The target PC commands are case sensitive, but the arguments
are not.

After you have created and downloaded a target application to the target PC,
you can use the target PC commands to run and test your application:

1 On the target PC, press C.

The target PC command window is activated, and a command line opens.
If the command window is already activated, do not press C. In this case,
pressing C is taken as the first letter in a command.

8-2

Target PC Command-Line Interface

2 In the Cmd box, type a target PC command. For example, to start your
target application, type

start

3 To stop the application, type

stop

Once the command window is active, you do not have to reactivate it before
typing the next command.

Manipulating Target Object Properties from the
Target PC
The xPC Target software uses a target object to represent the target kernel
and your target application. This section shows some of the common tasks
that you use with target objects and their properties.

These commands create a temporary difference between the behavior of the
target application and the properties of the target object. The next time you
access the target object, the properties are updated from the target PC.

1 On the target PC keyboard, press C.

The target PC activates the command window.

2 Type a target command. For example, to change the frequency of the signal
generator (parameter 1) in the model xpcosc, type

setpar 1=30

The command window displays a message to indicate that the new
parameter has registered.

System: p[1] is set to 30.00000

3 Check the value of parameter 1. For example, type

p1

8-3

8 Using the Target PC Command-Line Interface

The command window displays a message to indicate that the new
parameter has registered.

System: p[1] is set to 30.00000

4 Check the value of signal 0. For example, type

s0

The command window displays a message to indicate that the new
parameter has registered.

System: S0 has value 5.1851

5 Change the stop time. For example, to set the stop time to 1000, type

stoptime = 1000

The parameter changes are made to the target application but not to the
target object. When you type any xPC Target command in the MATLAB
Command Window, the target PC returns the current properties of the
target object.

Note The target PC command setpar does not work for vector parameters.

To see the correlation between a parameter or signal index and its block, you
can look at the model_name_pt.c or model_name_bio.c of the generated code
for your target application.

Manipulating Scope Objects from the Target PC
The xPC Target software uses a scope object to represent your target scope.
This section shows some of the common tasks that you use with scope objects.

These commands create a temporary difference between the behavior of the
target application and scope object. The next time you access the scope object,
the data is updated from the target PC.

1 On the target PC keyboard, press C.

8-4

Target PC Command-Line Interface

The target PC activates the command window.

2 Type a scope command. For example, to add a target scope (scope 2) in the
model xpcosc, type

addscope 2

The xPC Target software adds another scope monitor to the target PC
screen. The command window displays a message to indicate that the new
scope has registered.

Scope: 2, created, type is target S0

3 Type a scope command. For example, to add a signal (0) to the new scope,
type

addsignal 2=0

The command window displays a message to indicate that the new
parameter has registered.

Scope: 2, signal 0 added

You can add as many signals as necessary to the scope.

4 Type a scope command. For example, to start the scope 2, type

startscope 2

The target scope 2 starts and displays the signals you added in the previous
step.

Note If you add a target scope from the target PC, you need to start that scope
manually. If a target scope is in the model, starting the target application
starts that scope automatically.

Manipulating Scope Object Properties from the
Target PC
This section shows some of the common tasks that you use with target objects
and their properties.

8-5

8 Using the Target PC Command-Line Interface

These commands create a temporary difference between the behavior of the
target application and the properties of the target object. The next time you
access the target object, the properties are updated from the target PC.

1 On the target PC keyboard, press C.

The target PC activates the command window.

2 Type a scope property command. For example, to change the number of
samples (1000) to acquire in scope 2 of the model xpcosc, type

numsamples 2=1000

3 Type a scope property command. For example, to change the scope mode
(numerical) of scope 2 of the model xpcosc, type

scopemode 2=numerical

The target scope 2 display changes to a numerical one.

Aliasing with Variable Commands on the Target PC
Use variables to tag (or alias) unfamiliar commands, parameter indices, and
signal indexes with more descriptive names.

After you have created and downloaded a target application to the target PC,
you can create target PC variables.

1 On the target PC keyboard, type a variable command. For example, if you
have a parameter that controls a motor, you could create the variables
on and off by typing

setvar on = p7 = 1
setvar off = p7 = 0

The target PC command window is activated when you start to type, and a
command line opens.

8-6

Target PC Command-Line Interface

2 Type the variable name to run that command sequence. For example, to
turn the motor on, type

on

The parameter P7 is changed to 1, and the motor turns on.

8-7

8 Using the Target PC Command-Line Interface

8-8

9

Working with Target PC
Files and File Systems

• “Introduction” on page 9-2

• “FTP and File System Objects” on page 9-4

• “Using xpctarget.ftp Objects” on page 9-5

• “Using xpctarget.fs Objects” on page 9-9

9 Working with Target PC Files and File Systems

Introduction
xPC Target scopes of type file create files on the target PC. To work with
these files from the host PC, you need to work with the xpctarget.ftp and
xpctarget.fs objects. The xpctarget.ftp object allows you to perform basic
file transfer operations on the target PC file system. The xpctarget.fs object
allows you to perform file system-like operations on the target PC file system.

You cannot direct the scope to write the data to a file on the xPC Target host
PC. Once the software has written the signal data file to the target PC, you
can access the contents of the file for plotting or other inspection from the host
PC. The software can write data files to

• The C:\ or D:\ drive of the target PC. This can be a serial ATA (SATA) or
parallel ATA (PATA)/Integrated Device Electronics (IDE) drive, configured
as a primary master. The xPC Target software supports file systems
of type FAT-12, FAT-16, or FAT-32. Ensure that the hard drive is not
cable-selected and that the BIOS can detect it.

If you have a target PC with multiple partitions on a hard drive, an The
xPC Target software scope of type file can access those partitions if
they are formatted with FAT-12, FAT-16, or FAT-32. It will ignore any
unsupported file systems.

• A 3.5-inch disk drive.

• Disks connected to a secondary IDE controller. The software supports up to
four drives through the second IDE controller. By default, it works with
drives configured as the primary master. If you want to use a secondary
IDE controller, you must configure the xPC Target software for it (see
“Converting xPC Target File Format Content to Double Precision Data” on
page 9-12 in Chapter 6, “Software Environment and Demos”).

The largest single file that you can create is 4 GB.

Note that writing data files to 3.5-inch disk drives is considerably slower
than writing to hard drives.

You can access signal data files, or any target PC system file, in one of the
following ways:

9-2

Introduction

• If you are running the target PC as a stand-alone system, you can access
that file by rebooting the target PC under an operating system such as DOS
and accessing the file through the operating system utilities.

• If you are running the target PC in conjunction with a host PC, you
can access the target PC file from the host PC by representing that
file as an xpctarget.ftp object. Through the MATLAB interface, use
xpctarget.ftp methods on that FTP object. The xpctarget.ftp object
methods are file transfer operations such as get and put.

• If you are running the target PC in conjunction with a host PC, you can
access the target PC file from the host PC by representing the target PC file
system as an xpctarget.fs object. Through the MATLAB interface, use
the xpctarget.fs methods on the file system and perform file system-like
methods such as fopen and fread on the signal data file. These methods
work like the MATLAB file I/O methods. The xpctarget.fs methods also
include file system utilities that allow you to collect target PC file system
information for the disk and disk buffers.

This topic describes procedures on how to use the xpctarget.ftp and
xpctarget.fs methods for common operations. See “Function Reference” and
“Functions” for a reference of the methods for these objects.

Note This topic focuses primarily on working with the target PC data files
that you generate from an xPC Target scope object of type file.

For a demo of how to perform data logging with scopes of type file, see Data
Logging With a File Scope.

9-3

9 Working with Target PC Files and File Systems

FTP and File System Objects
The xPC Target software uses two objects, xpctarget.ftp and xpctarget.fs
(file system), to work with files on a target PC. You use the xpctarget.ftp
object to perform file transfer operations between the host and target PC. You
use the xpctarget.fs object to access the target PC file system. For example,
you can use an xpctarget.fs object to open, read, and close a signal data file
created by an xPC Target scope of type file.

Note This feature provides FTP-like commands, such as get and put.
However, it is not a standard FTP implementation. For example, the software
does not support the use of a standard FTP client.

To create an xpctarget.ftp object, use the FTP object constructor function
xpctarget.ftp. In the MATLAB Command Window, type

f = xpctarget.ftp

The xPC Target software uses a file system object on the host PC to represent
the target PC file system. You use file system objects to work with that file
system from the host PC.

To create an xpctarget.fs object, use the FTP object constructor function
xpctarget.fs. In the MATLAB window, type

f = xpctarget.fs

Both xpctarget.ftp and xpctarget.fs belong to the xpctarget.fsbase
object. This object encompasses the methods common to xpctarget.ftp
and xpctarget.fs. You can call the xpctarget.fsbase methods for both
xpctarget.ftp and xpctarget.fs objects. The xPC Target software creates
the xpctarget.fsbase object when you create either an xpctarget.ftp or
xpctarget.fs object. You enter xpctarget.fsbase object methods in the
MATLAB Command Window on the host PC or use M-file scripts.

9-4

Using xpctarget.ftp Objects

Using xpctarget.ftp Objects

In this section...

“Overview” on page 9-5
“Accessing Files on a Specific Target PC” on page 9-6
“Listing the Contents of the Target PC Directory” on page 9-7
“Retrieving a File from the Target PC to the Host PC” on page 9-7
“Copying a File from the Host PC to the Target PC” on page 9-8

Overview
The xpctarget.ftp object enables you to work with any file on the target PC,
including the data file that you generate from an xPC Target scope object of
type file. You enter target object methods in the MATLAB window on the
host PC or use M-file scripts. The xpctarget.ftp object has methods that
allow you to use

• cd to change directories

• dir to list the contents of the current directory

• get (ftp) to retrieve a file from the target PC to the host PC

• mkdir to make a directory

• put to place a file from the host PC to the target PC

• pwd to get the current working directory path

• rmdir to remove a directory

The procedures in this section assume that the target PC has a signal data
file created by an xPC Target scope of type file. This file has the pathname
C:\data.dat. See “Simulink Model” in the xPC Target Getting Started Guide
and “Signal Tracing with xPC Target Scope Blocks” on page 3-46 in this
documentation for additional details.

The xPC Target software also provides methods that allow you to perform file
system-type operations, such as opening and reading files. For a complete list
of these methods, see “Using xpctarget.fs Objects” on page 9-9.

9-5

9 Working with Target PC Files and File Systems

Accessing Files on a Specific Target PC
You can access specific target PC files from the host PC for the xpctarget.ftp
object.

Use the xpctarget.ftp creator function. If your system has multiple targets,
you can access specific target PC files from the host PC for the xpctarget.ftp
object.

For example, to list the name of the current directory of a target PC through
a TCP/IP connection,

1 In the MATLAB Command Window, type a command like the following to
assign the xpctarget.ftp object to a variable.

f=xpctarget.ftp('TCPIP','192.168.0.10','22222');

2 Type

f.pwd;

Alternatively, you can use the xpctarget.xpc constructor to first construct a
target object, then use that target object as an argument to xpctarget.ftp.

1 In the MATLAB window, type a command like the following to assign the
xpctarget.xpc object to a variable.

tg1=xpctarget.xpc('TCPIP','192.168.0.10','22222');

2 Type the following command to assign the xpctarget.ftp object to the
tg1 target object variable.

f=xpctarget.ftp(tg1);

Alternatively, if you want to work with the files of the default target PC, you
can use the xpctarget.ftp constructor without arguments.

In the MATLAB window, type a command like the following to assign the
xpctarget.ftp object to a variable.

f=xpctarget.ftp;

The xPC Target software assigns the f variable to the default target PC.

9-6

Using xpctarget.ftp Objects

Listing the Contents of the Target PC Directory
You can list the contents of the target PC directory by using xPC Target
methods on the host PC for the xpctarget.ftp object. Use the method syntax
to run an xpctarget.ftp object method:

method_name(ftp_object)

Note You must use the dir(f) syntax to list the contents of the directory. To
get the results in an M-by-1 structure, use a syntax like y=dir(f). See the
dir method reference for further details.

For example, to list the contents of the C:\ drive,

1 In the MATLAB window, type the following to assign the xpctarget.ftp
object to a variable:

f=xpctarget.ftp;

2 Type

f.pwd

This gets the current directory. You get a result like the following:

ans =
C:\

3 Type the following to list the contents of this directory:

dir(f)

Retrieving a File from the Target PC to the Host PC
You can retrieve a copy of a data file from the target PC by using xPC Target
methods on the host PC for the xpctarget.ftp object.

Use the method syntax to run an xpctarget.ftp object method. The syntax
method_name(ftp_object, argument_list) can be replaced with

ftp_object.method_name(argument_list)

9-7

9 Working with Target PC Files and File Systems

For example, to retrieve a file named data.dat from the target PC C:\ drive
(default),

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.ftp object to a variable.

f=xpctarget.ftp;

2 Type

f.get('data.dat');

This retrieves the file and saves that file to the variable data. This content
is in the xPC Target file format.

Copying a File from the Host PC to the Target PC
You can place a copy of a file from the host PC by using xPC Target methods
on the host PC for the xpctarget.ftp object.

Use the method syntax to run an xpctarget.ftp object method. The syntax
method_name(ftp_object, argument_list) can be replaced with

ftp_object.method_name(argument_list)

For example, to copy a file named data2.dat from the host PC to the target
PC C:\ drive (default),

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.ftp object to a variable.

f=xpctarget.ftp;

2 Type the following to save that file to the variable data.

f.put('data2.dat');

9-8

Using xpctarget.fs Objects

Using xpctarget.fs Objects

In this section...

“Overview” on page 9-9
“Accessing File Systems from a Specific Target PC” on page 9-10
“Retrieving the Contents of a File from the Target PC to the Host PC” on
page 9-11
“Removing a File from the Target PC” on page 9-14
“Getting a List of Open Files on the Target PC” on page 9-14
“Getting Information about a File on the Target PC” on page 9-15
“Getting Information about a Disk on the Target PC” on page 9-16

Overview
The fs object enables you to work with the target PC file system from the host
PC. You enter target object methods in the MATLAB window on the host PC
or use M-file scripts. The fs object has methods that allow you to use

• cd to change directories

• dir to list the contents of the current directory

• diskinfo to get information about the specified disk

• fclose to close a file (similar to MATLAB fclose)

• fileinfo to get information about a particular file

• filetable to get information about files in the file system

• fopen to open a file (similar to MATLAB fopen)

• fread to read a file (similar to MATLAB fread)

• fwrite to write a file (similar to MATLAB fwrite)

• getfilesize to get the size of a file in bytes

• mkdir to make a directory

• pwd to get the current working directory path

9-9

9 Working with Target PC Files and File Systems

• removefile to remove a file from the target PC

• rmdir to remove a directory

Useful global utility:

• readxpcfile, to interpret the raw data from the fread method

The procedures in this section assume that the target PC has a signal data
file created by an xPC Target scope of type file. This file has the pathname
C:\data.dat.

The xPC Target software also provides methods that allow you to perform file
transfer operations, such as putting files on and getting files from a target
PC. For a description of these methods, see “Using xpctarget.ftp Objects”
on page 9-5.

Accessing File Systems from a Specific Target PC
You can access specific target PC files from the host PC for the xpctarget.fs
object.

Use the xpctarget.fs creator function. If your system has multiple targets,
you can access specific target PC files from the host PC for the xpctarget.fs
object.

For example, to list the name of the current directory of a target PC through
a TCP/IP connection,

1 In the MATLAB window, type a command like the following to assign the
xpctarget.fs object to a variable.

fsys=xpctarget.fs('TCPIP','192.168.0.10','22222');

2 Type

fsys.dir;

Alternatively, you can use the xpctarget.xpc constructor to first construct a
target object, then use that target object as an argument to xpctarget.fs.

9-10

Using xpctarget.fs Objects

1 In the MATLAB window, type a command like the following to assign the
xpctarget.xpc object to a variable.

tg1=xpctarget.xpc('TCPIP','192.168.0.10','22222');

2 Type the following command to assign the xpctarget.fs object to the tg1
target object variable.

fs=xpctarget.fs(tg1);

Alternatively, if you want to work with the file system of the default target
PC, you can use the xpctarget.fs constructor without arguments.

1 In the MATLAB window, type a command like the following to assign the
xpctarget.fs object to a variable.

fsys=xpctarget.fs;

The xPC Target software assigns the fsys variable to the default target PC.

2 Type

fsys.dir;

Retrieving the Contents of a File from the Target PC
to the Host PC
You can retrieve the contents of a data file from the target PC by using xPC
Target methods on the host PC for the xpctarget.fs object. This is an
alternate method to “Exporting Data from Scopes of Type File to MATLAB
Workspace” on page 3-32 in Chapter 3, “Signals and Parameters”.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to retrieve the contents of a file named data.dat from the target
PC C:\ drive (default),

9-11

9 Working with Target PC Files and File Systems

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type

h=fsys.fopen('data.dat');

or

h=fopen(fsys,'data.dat');

This opens the file data.dat for reading and assigns the file identifier to h.

3 Type

data2=fsys.fread(h);

or

data2=fread(fsys,h);

This reads the file data.dat and stores the contents of the file to data2.
This content is in the xPC Target file format.

4 Type

fsys.fclose(h);

This closes the file data.dat.

Before you can view or plot the contents of this file, you must convert the
contents. See “Converting xPC Target File Format Content to Double
Precision Data” on page 9-12.

Converting xPC Target File Format Content to Double Precision
Data
The xPC Target software provides the script readxpcfile.m to convert xPC
Target file format content (in bytes) to double precision data representing the
signals and timestamps. The readxpcfile.m script takes in data from a file

9-12

Using xpctarget.fs Objects

in xPC Target format. The data must be a vector of bytes (uint8). To convert
the data to uint8, use a command like the following:

data2 = uint8(data2');

This section assumes that you have a variable, data2, that contains data in
the xPC Target file format (see “Retrieving the Contents of a File from the
Target PC to the Host PC” on page 9-11):

1 In the MATLAB window, change directory to the directory that contains
the xPC Target format file.

2 Type

new_data2=readxpcfile(data2);

The readxpcfile script converts the format of data2 from the xPC Target
file format to an array of bytes. It also creates a structure for that file
in new_data2, of which one of the elements is an array of doubles, data.
The data member is also appended with a time stamp vector. All data is
returned as doubles, which represent the real-world values of the original
Simulink signals at the specified times during target execution.

You can view or examine the signal data. You can also plot the data with
plot(new_data2.data).

If you are using the xPC Target software in StandAlone mode, you can extract
the data from the data file if you know the number of signals in the scope. If
you know this number, you can extract the data. Note the following:

• Ignore the first 512 bytes of the file. This is file header information.

• After the first 512 bytes, the file stores the signals sequentially as doubles.
For example, assume the scope has three signals, x, y, and z. Assume that
x[0] is the value of x at sample 0, x[1] is the value at sample 1, and so
forth, and t[0], t[1] are the simulation time values at samples 0, 1, and so
forth, respectively. The file saves the data using the following pattern:

x[0] y[0] z[0] t[0] x[1] y[1] z[1] t[1] x[2] y[2] z[2] t[2]...
x[N] y[N] z[N] t[N]

9-13

9 Working with Target PC Files and File Systems

N is the number of samples acquired. The file saves x, y, z, and t as doubles
at 8 bytes each.

Removing a File from the Target PC
You can remove a file from the target PC by using xPC Target methods on
the host PC for the xpctarget.ftp object. If you have not already done so,
close this file first with fclose.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to remove a file named data2.dat from the target PC C:\ drive
(default),

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type the following to remove the specified file from the target PC.

fsys.removefile('data2.dat');

or

removefile(fsys,'data2.dat');

Getting a List of Open Files on the Target PC
You can get a list of open files on the target PC file system from the host PC
by using xPC Target methods on the host PC for the xpctarget.fs object.
Do this to ensure you do not have files open unnecessarily. The target PC file
system limits the number of open files you can have to eight.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to get a list of open files for the file system object fsys,

9-14

Using xpctarget.fs Objects

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type

fsys.filetable

If the file system has open files, a list like the following is displayed:

ans =
Index Handle Flags FilePos Name
--

0 00060000 R__ 8512 C:\DATA.DAT
1 00080001 R__ 0 C:\DATA1.DAT
2 000A0002 R__ 8512 C:\DATA2.DAT
3 000C0003 R__ 8512 C:\DATA3.DAT
4 001E0001 R__ 0 C:\DATA4.DA

3 The table returns the open file handles in hexadecimal. To convert a handle
to one that other xpctarget.fs methods, such as fclose, can use, use
the hex2dec function. For example,

h1 = hex2dec('001E0001'))
h1 =
1966081

4 To close that file, use the xpctarget.fs fclose method. For example,

fsys.fclose(h1);

Getting Information about a File on the Target PC
You can display information for a file on the target PC file system from the
host PC by using xPC Target methods on the host PC for the xpctarget.fs
object.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

9-15

9 Working with Target PC Files and File Systems

For example, to display the information for the file identifier fid1,

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type

fid1=fsys.fopen('data.dat');

This opens the file data.dat for reading and assigns the file identifier
to fid1.

3 Type

fsys.fileinfo(fid1);

This returns disk information like the following for the C:\ drive file system.

ans =
FilePos: 0

AllocatedSize: 12288
ClusterChains: 1

VolumeSerialNumber: 1.0450e+009
FullName: 'C:\DATA.DAT'

Getting Information about a Disk on the Target PC
You can display information for a disk on the target PC file system from the
host PC by using xPC Target methods on the host PC for the xpctarget.fs
object.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to display the disk information for the C:\ drive,

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

9-16

Using xpctarget.fs Objects

fsys=xpctarget.fs;

2 Type

fsys.diskinfo('C:\');

This returns disk information like the following for the C:\ drive file system.

ans =
Label: 'SYSTEM '

DriveLetter: 'C'
Reserved: ''

SerialNumber: 1.0294e+009
FirstPhysicalSector: 63

FATType: 32
FATCount: 2

MaxDirEntries: 0
BytesPerSector: 512

SectorsPerCluster: 4
TotalClusters: 2040293

BadClusters: 0
FreeClusters: 1007937

Files: 19968
FileChains: 22480
FreeChains: 1300

LargestFreeChain: 64349

9-17

9 Working with Target PC Files and File Systems

9-18

10

Graphical User Interfaces

10 Graphical User Interfaces

xPC Target Interface Blocks to Simulink Models

In this section...

“Introduction” on page 10-2
“Simulink User Interface Model” on page 10-2
“Creating a Custom Graphical Interface” on page 10-3
“To xPC Target Block” on page 10-4
“From xPC Target Block” on page 10-5
“Creating a Target Application Model” on page 10-6
“Marking Block Parameters” on page 10-7
“Marking Block Signals” on page 10-9

Introduction
You can run and test your target application using the MATLAB
command-line interface or the Simulink block diagram for your application.
You can also use special blocks provided with the xPC Target block library
to interface signals and parameters from a target application to a custom
GUI application.

Use the Simulink interface to create a custom graphical user interface (GUI)
for your xPC Target application. You do this by creating an user interface
model with the Simulink interface and add-on products like Virtual Reality
Toolbox™ and Altia Design (a third-party product).

Simulink User Interface Model
A user interface model is a Simulink model containing Simulink blocks from
add-on products and interface blocks from the xPC Target block library. This
user interface model can connect to a custom graphical interface using Virtual
Reality Toolbox or Altia products. The user interface model runs on the host
PC and communicates with your target application running on the target PC
using To xPC Target and From xPC Target blocks.

The user interface allows you to change parameters by downloading them to
the target PC, and to visualize signals by uploading data to the host PC.

10-2

xPC Target™ Interface Blocks to Simulink® Models

Virtual Reality Toolbox — Virtual Reality Toolbox enables you to display
a Simulink user interface model in 3-D. It provides Simulink blocks
that communicate with xPC Target interface blocks. These blocks then
communicate to a graphical interface. This graphical interface is a Virtual
Reality Modeling Language (VRML) world displayed with a Web browser
using a VRML plug-in.

Altia Design — Altia also provides Simulink blocks that communicate with
xPC Target interface blocks. These blocks then communicate with Altia’s
graphical interface or with a Web browser using the Altia ProtoPlay plug-in.

Creating a Custom Graphical Interface
The xPC Target block library provides Simulink interface blocks to connect
graphical interface elements to your target application. The steps for creating
your own custom user interface are listed below:

1 In the Simulink target application model, decide which block parameters
and block signals you want to have access to through graphical interface
control devices and graphical interface display devices.

2 Tag all block parameters in the Simulink model that you want to be
connected to a control device. See “Marking Block Parameters” on page
10-7.

3 Tag all signals in Simulink model that you want to be connected to a
display device. See “Marking Block Signals” on page 10-9.

10-3

10 Graphical User Interfaces

4 In the MATLAB interface, run the function xpcsliface('model_name') to
create the user interface template model. This function generates a new
Simulink model containing only the xPC Target interface blocks (To xPC
Target and From xPC Target) defined by the tagged block parameters and
block signals in the target application model.

5 To the user interface template model, add Simulink interface blocks from
add-on products (Virtual Reality Toolbox, Altia Design).

• You can connect Altia blocks to the xPC Target To PC Target interface
blocks. To xPC Target blocks on the left should be connected to control
devices.

• You can connect Altia and Virtual Reality Toolbox blocks to the xPC
Target From PC Target interface blocks. From xPC Target blocks on the
right should be connected to the display devices.

You can position these blocks to your liking.

6 Start both the xPC Target application and the Simulink user interface
model that represents the xPC Target application.

To xPC Target Block
This block behaves as a sink and usually receives its input data from a
control device. The purpose of this block is to write a new value to a specific
parameter on the target application.

This block is implemented as an M-file S-function. The block is optimized so
that it only changes a parameter on the target application when the input
value differs from the value that existed at the last time step. This block
uses the parameter downloading feature of the xPC Target command-line
interface. This block is available from the xpclib/Misc block sublibrary. See To
xPC Target in the xPC Target I/O Reference for further configuration details.

10-4

xPC Target™ Interface Blocks to Simulink® Models

Note The use of To xPC Target blocks requires a connection between the host
and target PC. If there is no connection between the host and target PC,
operations such as opening a model that contains these blocks or copying these
blocks within or between models, will take significantly longer than normal.

From xPC Target Block
This block behaves like a source and its output is usually connected to the
input of a display device.

10-5

10 Graphical User Interfaces

Because only one numerical value per signal is uploaded during a time
step, the number of samples of a scope object is set to 1. The block uses the
capability of the xPC Target command-line interface and is implemented as an
M-file S-function. This block is available from the xpclib/Misc sublibrary. See
From xPC Target in the xPC Target I/O Reference for further configuration
details.

Note The use of From xPC Target blocks requires a connection between the
host and target PC. If there is no connection between the host and target PC,
operations such as opening a model that contains these blocks or copying these
blocks within or between models, will take significantly longer than normal.

Creating a Target Application Model
A target application model is a Simulink model that describes your physical
system, a controller, and its behavior. You use this model to create a real-time

10-6

xPC Target™ Interface Blocks to Simulink® Models

target application, and you use this model to select the parameters and
signals you want to connect to a custom graphical interface.

Creating a target application model is the first step you need to do before you
can tag block parameters and block signals for creating a custom graphical
interface.

See “Marking Block Parameters” on page 10-7 and “Marking Block Signals” on
page 10-9 for descriptions of how to mark block properties and block signals.

Marking Block Parameters
Tagging parameters in your Simulink model allows the function xpcsliface
to create To xPC Target interface blocks. These interface blocks contain the
parameters you connect to control devices in your user interface model.

After you create a Simulink model, you can mark the block parameters. This
procedure uses the model xpctank.mdl as an example.

1 Open a Simulink model. For example, in the MATLAB Command Window,
type

xpctank

2 Point to a Simulink block, and then right-click.

3 From the menu, click Block Properties.

A Block properties dialog box opens.

10-7

10 Graphical User Interfaces

4 In the Description box, delete the existing tag and enter a tag to the
parameters for this block.

For example, the SetPoint block is a constant with a single parameter that
selects the level of water in the tank. Enter the tag shown below.

The tag has the following format syntax

xPCTag(1, . . . index_n)= label_1 . . . label_n;

For single dimension ports, the following syntax is also valid:

xPCTag=label;

index_n -- Index of a block parameter. Begin numbering parameters
with an index of 1.

label_n -- Name for a block parameter that will be connected to a To
xPC Target block in the user interface model. Separate the labels with a
space, not a comma.

label_1...label_n must consist of the same identifiers as those used by
C/C++ to name functions, variables, and so forth. Do not use names like
-foo.

10-8

xPC Target™ Interface Blocks to Simulink® Models

5 Repeat steps 1 through 3 for the remaining parameters you want to tag.

For example, for the Controller block, enter the tag

For the PumpSwitch and ValveSwitch blocks, enter the following tags
respectively:

xPCTag(2)=pump_switch;

xPCTag(1)=drain_valve;

To create the To xPC blocks in an user interface model for a block with four
properties, use the following syntax:

xPCTag(1,2,3,4)=label_1label_2label_3label_4;

To create the To xPC blocks for the second and fourth properties in a block
with at least four properties, use the following syntax:

xPCTag(2,4)=label_1 label_2;

6 From the File menu, click Save as. Enter a filename for your model. For
example, enter

xpc_tank1

You next task is to mark block signals if you have not already done so, and
then create the user interface template model. See “Marking Block Signals”
on page 10-9 and “Creating a Custom Graphical Interface” on page 10-3.

Marking Block Signals
Tagging signals in your Simulink model allows the function xpcsliface to
create From xPC Target interface blocks. These interface blocks contain the
signals you connect to display devices in your user interface model.

10-9

10 Graphical User Interfaces

After you create a Simulink model, you can mark the block signals. This
procedure uses the model xpc_tank1.mdl (or xpctank.mdl) as an example.
See “Creating a Target Application Model” on page 10-6.

Note that you cannot select signals on the output ports of any virtual blocks
such as Subsystem and Mux blocks. Also, you cannot select signals on any
function-call, triggered signal output ports.

1 Open a Simulink model. For example, in the MATLAB Command Window,
type

xpc_tank or xpc_tank1

2 Point to a Simulink signal line, and then right-click.

3 From the menu, click Signal Properties.

A Signal Properties dialog box opens.

4 Select the Documentation tab.

5 In the Description box, enter a tag to the signals for this line.

10-10

xPC Target™ Interface Blocks to Simulink® Models

For example, the block labeled TankLevel is an integrator with a single
signal that indicates the level of water in the tank. Replace the existing tag
with the tag shown below.

The tag has the following format syntax:

xPCTag(1, . . . index_n)=label_1 . . . label_n;

For single dimension ports, the following syntax is also valid:

XPCTag=label:

• index_n— Index of a signal within a vector signal line. Begin numbering
signals with an index of 1.

• label_n — Name for a signal that will be connected to a From xPC
Target block in the user interface model. Separate the labels with a
space, not a comma.

label_1...label_n must consist of the same identifiers as those used by
C/C++ to name functions, variables, and so forth. Do not use names like
-foo.

10-11

10 Graphical User Interfaces

To create the From xPC blocks in an user interface model for a signal line
with four signals (port dimension of 4), use the following syntax:

xPCTag(1,2,3,4)=label_1 label_2 label_3 label_4;

To create the From xPC blocks for the second and fourth signals in a signal
line with at least four signals, use the following syntax:

xPCTag(2,4)=label_1 label_2;

Note Only tag signals from nonvirtual blocks. Virtual blocks are only
graphical aids (see “Virtual Blocks”). For example, if your model combines
two signals into the inputs of a Mux block, do not tag the signal from the
output of the Mux block. Instead, tag the source signal from the output
of the originating nonvirtual block.

6 From the File menu, click Save as. Enter a filename for your model. For
example, enter

xpc_tank1

You next task is to mark block parameters if you have not already done so.
See “Marking Block Parameters” on page 10-7. If you have already marked
block signals, return to “Creating a Custom Graphical Interface” on page 10-3
for additional guidance on creating a user interface template model.

10-12

11

xPC Target Web Browser
Interface

11 xPC Target™ Web Browser Interface

Web Browser Interface

In this section...

“Introduction” on page 11-2
“Connecting the Web Interface Through TCP/IP” on page 11-2
“Connecting the Web Interface Through RS-232” on page 11-3
“Using the Main Pane” on page 11-7
“Changing WWW Properties” on page 11-9
“Viewing Signals with a Web Browser” on page 11-10
“Viewing Parameters with a Web Browser” on page 11-11
“Changing Access Levels to the Web Browser” on page 11-11

Introduction
The xPC Target software has a Web server that allows you to interact with
your target application through a Web browser. You can access the Web
browser with either a TCP/IP or serial (RS-232) connection.

The xPC Target Web server is built into the kernel that allows you to interact
with your target application using a Web browser. If the target PC is
connected to a network, you can use a Web browser to interact with the target
application from any host PC connected to the network.

Currently Microsoft Internet Explorer (Version 4.0 or later) and Netscape
Navigator (Version 4.5 or later) are the only supported browsers.

Connecting the Web Interface Through TCP/IP
If your host PC and target PC are connected with a network cable, you can
connect the target application on the target PC to a Web browser on the host
PC.

The TCP/IP stack on the xPC Target kernel supports only one simultaneous
connection, because its main objective is real-time applications. This
connection is shared between the MATLAB interface and the Web browser.
You must close any open connection to the target PC before you connect using

11-2

Web Browser Interface

the host PC Web browser. This also means that only one browser or the
MATLAB interface is able to connect at one time.

Before you connect your Web browser on the host PC, you must load a target
application onto the target PC. The target application does not have to be
running, but it must be loaded. Also, your browser must have JavaScript
and StyleSheets turned on.

Note Ensure that you close all other connections to the target PC. For
example, if you are currently connected to the target PC through xPC Target
Explorer, right-click on that target PC icon and select Disconnect.

1 In the MATLAB window, type

xpcwwwenable

The MATLAB interface is disconnected from the target PC, and the
connection is reset for connecting to another client. If you do not use this
command, your Web browser might not be able to connect to the target PC.

2 Open a Web browser. In the address box, enter the IP address and port
number you entered in the xPC Target Explorer window. For example, if
the target computer IP address is 192.168.0.10 and the port is 22222, type

http://192.168.0.10:22222/

The browser loads the xPC Target Web interface frame and panes.

Connecting the Web Interface Through RS-232
If the host PC and target PC are connected with a serial cable instead of a
network cable, you can still connect the target application on the target PC to
a Web browser on the host PC. The xPC Target software includes a TCP/IP to
RS-232 mapping application. This application runs on the host PC and writes
whatever it receives from the RS-232 connection to a TCP/IP port, and it
writes whatever is receives from the TCP/IP port to the RS-232 connection.
TCP/IP port numbers must be less than 216 = 65536.

11-3

11 xPC Target™ Web Browser Interface

Before you connect your Web browser on the host PC, you must load a target
application onto the target PC. The target application does not have to be
running, but it must be loaded. Also, your Web browser must have JavaScript
and StyleSheets turned on.

1 In the MATLAB window, type

xpcwwwenable or close(xpc)

The MATLAB interface is disconnected from the target PC, leaving the
target PC ready to connect to another client. The TCP/IP stack of the
xPC Target kernel supports only one simultaneous connection. If you do
not use this command, the TCP/IP to RS-232 gateway might not be able
to connect to the target PC.

2 Open a DOS command window, and enter the command to start the TCP/IP
to RS-232 gateway. For example, if the target PC is connected to COM1
and you would like to use the TCP/IP port 22222, type the following:

c:\<MATLAB root>\toolbox\rtw\targets\xpc\xpc\bin\xpctcp2ser
-v -t 22222 -c 1

For a description of the xpctcp2ser command, see “Syntax for the xpctcp2ser
Command” on page 11-5.

The TCP/IP to RS-232 gateway starts running, and the DOS command
window displays the message

--

* xPC Target TCP/IP to RS-232 gateway *

* Copyright 2000 The MathWorks *

--

Connecting COM to TCP port 22222

Waiting to connect

If you did not close the MATLAB to target application connection,
xpxtcp2ser displays the message Could not initialize COM port.

3 Open a Web browser. In the address box, enter

http://localhost:22222/

11-4

Web Browser Interface

The Web browser loads the xPC Target Web interface panes.

4 Using the Web interface, start and stop the target application, add scopes,
add signals, and change parameters.

5 In the DOS command window, press Ctrl+C.

The TCP/IP to RS-232 Gateway stops running, and the DOS command
window displays the message

interrupt received, shutting down

The gateway application has a handler that responds to Ctrl+C by
disconnecting and shutting down cleanly. In this case, Ctrl+C is not used
to abort the application.

6 In the MATLAB Command Window, type

xpc

The MATLAB interface reconnects to the target application and lists the
properties of the target object.

If you did not close the gateway application, the MATLAB window displays
the message

Error in ==>
C:\MATLABR13\toolbox\rtw\targets\xpc\xpc\@xpc\xpc.m
On line 31 ==> sync(xpcObj);

You must close the MATLAB interface and then restart it.

Syntax for the xpctcp2ser Command
The xpctcp2ser command starts the TCP/IP to RS-232 gateway. The syntax
for this command is

xpctcp2ser [-v] [-n] [-t tcpPort] [-c comPort]
xpctcp2ser -h

The options are described in the following table.

11-5

11 xPC Target™ Web Browser Interface

Command-
Line Option Description

-v Verbose mode. Produces a line of output every time a
client connects or disconnects.

-n Allows nonlocal connections. By default, only clients
from the same computer that the gateway is running
on are allowed to connect. This option allows anybody
to connect to the gateway.

If you do not use this option, only the host PC that is
connected to the target PC with a serial cable can connect
to the selected port. For example, if you start the gateway
on your host PC, with the default ports, you can type in
the Web browser http://localhost:2222. However, if
you try to connect to http://Domainname.com:22222,
you will probably get a connection error.

-t tcpPort Use TCP port tcpPort. Default t is 22222. For example,
to connect to port 20010, type -t 20010.

-h Print a help message.
-c comPort Use COM port comPort (1 <= comPort <= 4). Default is

1. For example, to use COM2, type -c 2.

11-6

Web Browser Interface

Using the Main Pane
TheMain pane is divided into four parts, one below the other. The four parts
are System Status, xPC Target Properties, Navigation, and WWW
Properties.

11-7

11 xPC Target™ Web Browser Interface

After you connect a Web browser to the target PC, you can use the Main
pane to control the target application:

1 In the left frame, click the Refresh button.

System status information in the top cell is uploaded from the target PC. If
the right frame is either the Signals List pane or the Screen Shot pane,
updating the left frame also updates the right frame.

2 Click the Start Execution button.

The target application begins running on the target PC, the Status line
is changed from Stopped to Running, and the Start Execution button
text changes to Stop Execution.

3 Update the execution time and average task execution time (TET).
Click the Refresh button. To stop the target application, click the Stop
Execution button.

11-8

Web Browser Interface

4 Enter new values in the StopTime and SampleTime boxes, then click
the Apply button. You can enter -1 or Inf in the StopTime box for an
infinite stop time.

The new property values are downloaded to the target application. Note
that the SampleTime box is visible only when the target application is
stopped. You cannot change the sample time while a target application is
running. (See “User Interaction” in the xPC Target Getting Started Guide
for limitations on changing sample times.)

5 Select scopes to view on the target PC. From the ViewMode list, select one
or all of the scopes to view.

Note The ViewMode control is visible in the xPC Target Properties pane
only if you add two or more scopes to the target PC.

Changing WWW Properties
The WWW Properties cell in the left frame contains fields that affect the
display on the Web interface itself, and not the application. There are two
fields: maximum signal width to display and refresh interval.

1 In the Maximum Signal Width box enter -1, Inf (all signals), 1 (show
only scalar signals), 2 (show scalar and vector signals less than or equal to
2 wide), or n (show signals with a width less than or equal to n).

11-9

11 xPC Target™ Web Browser Interface

Signals with a width greater than the value you enter are not displayed
on the Signals pane.

2 In the Refresh Interval box, enter a value greater than 10. For example,
enter 20.

The signal pane updates automatically every 20 seconds. Entering -1 or
Inf does not automatically refresh the pane.

Sometimes, both the frames try to update simultaneously, or the auto refresh
starts before the previous load has finished. This problem can happen with
slow network connections. In this case, increase the refresh interval or
manually refresh the browser (set the Refresh Interval = Inf).

This can also happen when you are trying to update a parameter or property
at the same time that the pane is automatically refreshing.

Sometimes, when a race condition occurs, the browser becomes confused about
the format, and you might have to refresh it. This should not happen often.

Viewing Signals with a Web Browser
The Signals pane is a list of the signals in your model.

After you connect a Web browser to the target PC you can use the Signals
pane to view signal data:

1 In the left frame, click the Signals button.

The Signals pane is loaded in the right frame with a list of signals and the
current values.

2 On the Signals pane in the right frame, click the Refresh button.

The Signals pane is updated with the current values. Vector/matrix
signals are expanded and indexed in the same column-major format that
the MATLAB interface uses. This can be affected by theMaximum Signal
Width value you enter in the left frame.

3 In the left frame, click the Screen Shot button.

11-10

Web Browser Interface

The Screen Shot pane is loaded and a copy of the current target PC screen
is displayed. The screen shot uses the portable network graphics (PNG)
file format.

Viewing Parameters with a Web Browser
The Parameters pane displays a list of all the tunable parameters in your
model. Row and column indices for vector/matrix parameters are also shown.

After you connect a Web browser to the target PC, you can use the
Parameters pane to change parameters in your target application while it is
running in real time:

1 In the left frame, click the Parameters button.

The Parameter List pane is loaded into the right frame.

If the parameter is a scalar parameter, the current parameter value is
shown in a box that you can edit.

If the parameter is a vector or matrix, click the Edit button to view the
vector or matrix (in the correct shape). You can edit the parameter in this
pane.

2 In the Value box, enter a new parameter value, and then click the Apply
button.

Changing Access Levels to the Web Browser
The Web browser interface allows you to set access levels to the target
application. The different levels limit access to the target application. The
highest level, 0, is the default level and allows full access. The lowest level, 4,
only allows signal monitoring and tracing with your target application.

1 In the Simulink window, click Configuration Parameters.

The Configuration Parameters dialog box for the model is displayed.

2 Click the Real-Time Workshop node.

The Real-Time Workshop pane opens.

11-11

11 xPC Target™ Web Browser Interface

3 In the Target selection section, access levels are set in the System
target file box. For example, to set the access level to 1, enter

xpctarget.tlc -axpcWWWAccessLevel=1

The effect of not specifying -axpcWWWAccessLevel is that the highest
access level (0) is set.

4 Click OK.

The various fields disappear, depending on the access level. For example, if
your access level does not allow you access to the parameters, you do not see
the button for parameters.

There are various access levels for monitoring, which allow different levels
of hiding. The proposed setup is described below. Each level builds on
the previous one, so only the incremental hiding of each successive level is
described.

Level 0 — Full access to all panes and functions.

Level 1 — Cannot change the sample and stop times. Cannot change
parameters, but can view parameters.

Level 2 — Cannot start and stop execution of the target application or log
data.

Level 3 — Cannot view parameters. Cannot add new scopes, but can edit
existing scopes.

Level 4 — Cannot edit existing scopes on the Scopes pane. Cannot add or
remove signals on the Scopes pane. Cannot view the Signals pane and the
Parameters pane, and cannot get scope data.

11-12

12

Interrupts Versus Polling

12 Interrupts Versus Polling

Polling Mode

In this section...

“Introduction” on page 12-2
“xPC Target Kernel Polling Mode” on page 12-2
“Interrupt Mode” on page 12-3
“Polling Mode” on page 12-4
“Setting the Polling Mode” on page 12-7
“Restrictions Introduced by Polling Mode” on page 12-10
“Controlling the Target Application” on page 12-13
“Polling Mode Performance” on page 12-14

Introduction
xPC Target interrupt mode is the default real-time execution mode for the
xPC Target kernel. For performance reasons, you might want to change the
real-time execution mode to polling mode.

A good understanding of polling mode will help you to use it effectively, and a
better understanding of interrupt mode will help you to decide under which
circumstances it makes sense for you to switch to the polling mode. This
section includes the following topics:

xPC Target Kernel Polling Mode
Polling mode for the xPC Target real-time kernel is designed to execute target
applications at sample times close to the limit of the hardware (CPU). Using
polling mode with high-speed and low-latency I/O boards and drivers allows
you to achieve smaller sample times for applications that you cannot achieve
using the interrupt mode of the xPC Target software.

Polling mode has two main applications:

• Control applications — Control applications of average model size and I/O
complexity that are executed at very small sample times (Ts = 5 to 50 µs)

12-2

Polling Mode

• DSP applications — Sample-based DSP applications (mainly audio and
speech) of average model size and I/O complexity that are executed at very
high sample rates (Fs = 20 to 200 kHz)

Interrupt Mode
Interrupt mode is the default real-time execution mode for the xPC Target
kernel. This mode provides the greatest flexibility and is the mode you
should choose for any application that executes at the given base sample
time without overloading the CPU.

The scheduler ensures real-time single-tasking and multitasking execution of
single-rate or multirate systems, including asynchronous events (interrupts).
Additionally, background tasks like host-target communication or updating
the target screen run in parallel with sample-time-based model tasks. This
allows you to interact with the target system while the target application
is executing in real time at high sample rates. This is made possible by an
interrupt-driven real-time scheduler that is responsible for executing the
various tasks according to their priority. The base sample time task can
interrupt any other task (larger sample time tasks or background tasks) and
execution of the interrupted tasks resumes as soon as the base sample time
task completes operation. This gives a quasi parallel execution scheme with
consideration to the priorities of the tasks.

Latencies Introduced by Interrupt Mode
Compared to other modes, interrupt mode has more advantages. The
exception is the disadvantage of introducing a constant overhead, or latency,
that reduces the minimal possible base sample time to a constant number.
The overhead is the sum of various factors related to the interrupt-driven
execution scheme and can be referred to as overall interrupt latency. The
overall latency consists of the following parts, assuming that the currently
executing task is not executing a critical section and has therefore not
disabled any interrupt sources:

• Interrupt controller latency — In a PC-compatible system the interrupt
controller is not part of the x86-compatible CPU but part of the CPU chip
set. The controller is accessed over the I/O-port address space, which
introduces a read or write latency of about 1 µs for each 8 bit/16 bit register
access. Because the CPU has to check for the interrupt line requesting
an interrupt, and the controller has to be reset after the interrupt has

12-3

12 Interrupts Versus Polling

been serviced, a latency of about 5 µs is introduced to properly handle the
interrupt controller.

• CPU hardware latency — Modern CPUs try to predict the next couple of
instructions, including branches, by the use of instruction pipelines. If
an interrupt occurs, the prediction fails and the pipeline has to be fully
reloaded. This process introduces an additional latency. Additionally,
because of interrupts, cache misses will occur.

• Interrupt handler entry and exit latency — Because an interrupt can stop
the currently executing task at any instruction and the interrupted task
has to resume proper execution when the interrupting task completes
execution, its state has to be saved and restored accordingly. This includes
saving CPU data and address registers, including the stack pointer. In
the case that the interrupted task executed floating-point unit (FPU)
operations, the FPU stack has to be saved as well (108 bytes on a Pentium
CPU). This introduces additionally latency.

• Interrupt handler content latency — If a background task has been
executing for a longer time, say in a loop, its needed data will be available
in the cache. But as soon as an interrupt occurs and the interrupt service
handler is executed, the data needed in the interrupt handler might no
longer be in the cache, causing the CPU to reload it from slower RAM. This
introduces additional latency. Generally, an interrupt reduces the optimal
execution speed or introduces latency, because of its unpredictable nature.

The xPC Target real-time kernel in interrupt mode is close to optimal
for executing code on a PC-compatible system. However, interrupt mode
introduces an overall latency of about 8 µs. This is a significant amount
of time when considering that a 1 GHz CPU can execute thousands of
instructions within 8 µs. This time is equivalent to a Simulink model
containing a hundred nontrivial blocks. Additionally, because lower priority
tasks have to be serviced as well, a certain amount of headroom (at least
5%) is necessary, which can cause additional cache misses and therefore
nonoptimal execution speed.

Polling Mode
Polling mode for the xPC Target real-time kernel does not have the 8 µs of
latency that interrupt mode does. This is because the kernel does not allow
interrupts at all, so the CPU can use this extra time for executing model code.

12-4

Polling Mode

Polling mode is sometimes seen as a “primitive” or “brute force” real-time
execution scheme. Nevertheless, when a real-time application executes at a
given base sample time in interrupt mode and overloads the CPU, switching
to polling mode is often the only alternative to get the application to execute
at the required sample time.

Polling means that the kernel waits in an empty while loop until the time
at which the next model step has to be executed is reached. Then the next
model step is executed. At least a counter implemented in hardware has
to be accessible by the kernel in order to get a base reference for when the
next model step execution has to commence. The kernel polls this hardware
counter. If this hardware counter must be outside the CPU, e.g., in the chip
set or even on an ISA or PCI board, the counter value can only be retrieved
by an I/O or memory access cycle that again introduces latency. This latency
usually eats up the freed-up time of polling mode. Fortunately, since the
introduction of the Pentium CPU family from Intel, the CPU is equipped with
a 64 bit counter on the CPU substrate itself, which commences counting at
power-up time and counts up driven by the actual clock rate of the CPU.
Even a highly clocked CPU is not likely to lead to an overflow of a 64 bit
counter (2^64 * 1e-9 (1 GHz CPU) = 584 years). The Pentium counter comes
with the following features:

• Accurate measurements — Because the counter counts up with the CPU
clock rate (~1 GHz nowadays), the accuracy of time measurements even
in the microsecond range is very high, therefore leading to very small
absolute real-time errors.

• No overflow — Because the counter is 64 bits wide, in practical use overflow
does not occur, which makes a CPU time expensive overflow handler
unnecessary.

• No latency — The counter resides on the CPU. Reading the counter value
can be done within one CPU cycle, introducing almost no latency.

The polling execution scheme does not depend on any interrupt source to
notify the code to continue calculating the next model step. While this frees
the CPU, it means that any code that is part of the exclusively running
polling loop is executed in real time, even components, which have so far been
executed in background tasks. Because these background tasks are usually
non-real-time tasks and can use a lot of CPU time, do not execute them. This
is the main disadvantage of polling mode. To be efficient, only the target

12-5

12 Interrupts Versus Polling

application’s relevant parts should be executed. In the case of the xPC Target
software, this is the code that represents the Simulink model itself.

Therefore, host-target communication and target display updating are
disabled. Because polling mode reduces the features of the xPC Target product
to a minimum, you should choose it only as the last possible alternative to
reach the required base sample time for a given model. Therefore, ensure the
following before you consider polling mode:

• The model is optimal concerning execution speed — First, you should
run the model through the Simulink profiler to find any possible speed
optimizations using alternative blocks. If the model contains continuous
states, the discretization of these states will reduce model complexity
significantly, because a costly fixed-step integration algorithm can be
avoided. If continuous states cannot be discretized, you should use the
integration algorithm with the lowest order that still produces correct
numerical results.

• Use the fastest available computer hardware — Ensure that the CPU with
the highest clock rate available is used for a given PC form factor. For the
desktop form factor, this would mean a clock rate above 1 GHz; for a mobile
application, e.g., using the PC/104 form factor, this would mean a clock rate
above 400 MHz. Most of the time, you should use a desktop PC, because
the highest clocked CPUs are available for this form factor only. Executing
xpcbench at the MATLAB prompt gives an understanding about the best
performing CPUs for xPC Target applications.

• Use the lowest latency I/O hardware and drivers available — Many xPC
Target applications communicate with hardware through I/O hardware
over either an ISA or PCI bus. Because each register access to such I/O
hardware introduces a comparably high latency time (~1 µs), the use of the
lowest latency hardware/driver technology available is crucial.

• The base sample time is about 50 µs or less — The time additionally
assigned to model code execution in polling mode is only about 8 µs. If the
given base sample time of the target application exceeds about 50 µs, the
possible percentage gain is rather small. Other optimization technologies
might have a bigger impact on increasing performance.

12-6

Polling Mode

Setting the Polling Mode
Polling mode is an alternative to the default interrupt mode of the real-time
kernel. This means that the kernel on the bootable 3.5-inch disk created by
the GUI allows running the target application in both modes without the
necessity to use another boot disk.

By default the target application executes in interrupt mode. To switch to
polling mode, you need to pass an option to the System target file command.
The following example uses xpcosc.mdl.

1 In the Simulink window, and from the Tools menu, point to Real-Time
Workshop, and then click Options.

The Configuration Parameters dialog box opens.

2 In the left pane, click the Real-Time Workshop node.

12-7

12 Interrupts Versus Polling

3 In the TLC options edit field, specify the option

-axpcCPUClockPoll=CPUClockRateMHz

The assignment of the clock rate of the target PC’s CPU is necessary
because the Pentium’s on-chip counter used for polling mode counts up
with the CPU clock rate. If the clock rate is provided, the kernel can
convert clock ticks to seconds and vice versa. If an incorrect clock rate is
provided, the target application executes at an incorrect base sample time.
You can find out about the CPU clock rate of the target PC by rebooting the
target PC and checking the screen output during BIOS execution time. The
BIOS usually displays the CPU clock rate in MHz right after the target PC
has been powered up.

12-8

Polling Mode

For example, if your target PC is a 1.2 GHz AMD Athlon, specify the
following option in the TLC options edit field:

-axpcCPUClockPoll=1200

If you want to execute the target application in interrupt mode again,
either remove the option or assign a CPU clock rate of 0 to the option:

-axpcCPUClockPoll=0

If you make a change to the TLC options field, you need to rebuild the target
application for the change to take effect. Building the target application,
downloading it, and preparing it for a run then work exactly the same way as
they did with default interrupt mode.

12-9

12 Interrupts Versus Polling

After the download of the target application has succeeded, the target screen
displays the mode, and if polling mode is activated, it additionally displays the
defined CPU clock rate in MHz. This allows checking for the correct setting.

Restrictions Introduced by Polling Mode
As explained above, polling mode executes the Simulink-based target
application in real time exclusively. While the target application is executing
in polling mode, all background tasks, including those for host-target
communication, target screen updating, and UDP transfers, are inactive.
This is because all interrupts of the target PC are fully disabled during the
execution of the target application. On one hand this ensures the highest
polling performance; on the other hand, as a consequence the background
tasks are not serviced.

Here is a list of all relevant restrictions of polling mode, which are otherwise
available in the default interrupt mode.

Host-Target Communication Is Not Available During the
Execution of the Target Application
If the target application execution is started in polling mode, e.g., with

start(tg)

host-target communication is disabled throughout the entire run, or in other
words until the stop time is reached. Each attempt to issue a command like

tg

leads to a communication-related error message. Even the start(tg)
command to start polling mode execution returns such an error message,
because the host side does not receive the acknowledgment from the target
before timing out. The error message when executing start(tg) is not
avoidable. Subsequently, during the entire run, it is best not to issue any
target-related commands on the host, in order to avoid displaying the same
error message over and over again.

As a consequence, it is not possible to issue a stop(tg) command to stop the
target application execution from the host side. The target application has to
reach its set stop time for polling mode to be exited. You can use

12-10

Polling Mode

tg.stoptime=x

before starting the execution, but once started the application executes until
the stop time is reached.

Nevertheless, there is a way to stop the execution interactively before
reaching the target application stop time. See “Controlling the Target
Application” on page 12-13.

If the target application execution finally reaches the stop time and polling
mode execution is stopped, host-target communication will begin functioning
again. However, the host-target communication link might be in a bad state.
If you still get communication error messages after polling mode execution
stops, type the command

xpctargetping

to reset the host-target communication link.

After the communication link is working again, type

tg

to resync the target object on the host side with the most current status of
the target application.

Target Screen Does Not Update During the Execution of the
Target Application
As with the restriction mentioned above, target screen updating is disabled
during the entire execution of the target application. Using the kernel with
the Enable target scope option enabled (see xpcexplr GUI) does not work.
You should therefore use the kernel with the Enable target scope property
disabled (text output only). The kernel enabled with text mode actually
provides more information when running in polling mode.

12-11

12 Interrupts Versus Polling

Session Time Does Not Advance During the Execution of the
Target Application
Because all interrupts are disabled during a run, the session time does not
advance. The session time right before and after the run is therefore the
same. This is a minor restriction and should not pose a problem.

The Only Rapid-Prototyping Feature Available Is Data Logging
Because host-target communication and target screen updating are disabled
during the entire run, most of the common rapid-prototyping features of the
xPC Target product are not available in polling mode. These include

• Parameter tuning — Neither through the command-line interface nor
through Simulink external mode

• Through scope objects — Not through the following types of scope objects:

- host (xPC Target Explorer or scripts)

- target (scopes on the target screen if property Enable target scope
is enabled)

- file (xPC Target Explorer, scripts, or blocks, on target PCs that have
file systems)

• Signal monitoring — You cannot run a GUI interface on the host PC using
an environment that depends on communication between the host and
target computers.

• Applications using the xPC Target API

• The Internet browser interface

• Other utilities like xpctargetspy

The only rapid-prototyping feature available is signal logging, because the
acquisition of signal data runs independently from the host, and logged data
is retrieved only after the execution is stopped. Nevertheless, being able
to log data allows gathering good enough information about the behavior
of the target application. Signal logging becomes a very important feature
in polling mode.

12-12

Polling Mode

Multirate Simulink Models Cannot Be Executed in Multitasking
Mode on the Target PC
Because of the polling mode execution scheme, executing Simulink-based
target applications in multitasking mode is not possible. The modeling
of function-call subsystems to handle asynchronous events (interrupts) is
not possible either. This can be a hard restriction, especially for multirate
systems. Multirate systems can be executed in single-tasking mode, but
because of its sequential execution scheme for all subsystems with different
rates, the CPU will most likely overload for the given base sample time. As an
important consequence, polling mode is only a feasible alternative to interrupt
mode if the model has a single rate or if it can be converted to a single-rate
model. A single-rate model implies continuous states only, discrete states
only, or mixed continuous and discrete states, if the continuous and discrete
subsystems have the same rate. Use the Simulink Format > Sample
time color feature to check for the single rate requirement. Additionally,
set the tasking mode property in the Simulation menu Configuration
Parameters > Solver pane to SingleTasking to avoid a possible switch to
multitasking mode. For more information on single-tasking mode compared to
multitasking mode, see the Real-Time Workshop User’s Guide documentation.

I/O Drivers Using Kernel Timing Information Cannot Be Used
Within a Model
Some xPC Target drivers use timing information exported from the kernel
in order to run properly, for example, for the detection of time-outs. Because
the standard timing engine of the real-time kernel is not running during
the entire target application execution in polling mode, timing information
passed back to the drivers is incorrect. Therefore, you cannot use drivers
importing the header file time_xpcimport.h. This is a current restriction
only. In a future version of polling mode, all drivers will make use of the
Pentium counter for getting timing information instead.

Controlling the Target Application
As mentioned, there is no way to interact with the running target application
in polling mode. This is especially restrictive for the case of stopping the model
execution before the application has reached the stop time that was defined
before the execution started. Because polling mode tries to be as optimal as
possible, any rapid-prototyping feature except signal logging is disabled. But

12-13

12 Interrupts Versus Polling

because I/O driver blocks added to the model are fully functional, you can use
I/O drivers to get to a minimal level of interactivity.

Stopping a target application using polling mode — You can use a low-latency
digital input driver for the digital PCI board in your model, which reads in a
single digital TTL signal. The signal is TTL low unless the model execution
should be stopped, for which the signal changes to TTL high. You can connect
the output port of the digital input driver block to the input port of a Stop
simulation block, found in the standard Simulink block library. This stops the
execution of the target application, depending on the state of the digital input
signal. You can either use a hardware switch connected to the board-specific
input pin or you can generate the signal by other means. For example, you
could use another digital I/O board in the host machine and connect the
two boards (one in the host, the other in the target) over a couple of wires.
You could then use the Data Acquisition Toolbox™ product to drive the
corresponding TTL output pin of the host board to stop the target application
execution from within the MATLAB interface.

Generally, you can use the same software/hardware setup for passing
other information back and forth during run time of the target application.
It is important to understand that any additional feature beside signal
logging has to be implemented at the model level, and it is, therefore, the
user’s responsibility to optimize for the minimal additional latency the
feature introduces. For example, being able to interactively stop the target
application execution is paid for by the introduction of an additional 1
µs latency necessary to read the digital signal over the digital I/O board.
However, if you need to read digital inputs from the plant hardware anyway,
and not all lines are used, you get the feature for free.

Polling Mode Performance
This is preliminary information. All benchmarks have been executed using
a 1 GHz AMD Athlon machine, which is the same machine that is at the
top of the list displayed by xpcbench.

The minimum achievable base sample time for model Minimal (type help
xpcbench in the MATLAB Command Window for further information) is 1 µs
with signal logging disabled and 2 µs with signal logging enabled.

12-14

Polling Mode

The minimum achievable base sample time for model f14 (type help
xpcbench for further information in the MATLAB window) using an ode4
fixed-step integration algorithm is 4 µs with signal logging disabled and 5 µs
with signal logging enabled.

A more realistic model, which has been benchmarked, is a second-order
continuous controller accessing real hardware over two 16 bit A/D channels
and two 16 bit D/A channels. The analog I/O board used is the fast and
low-latency PMC-ADADIO from http://www.generalstandards.com,
which is used in conjunction with some recently developed and heavily
optimized (lowest latency) xPC Target drivers for this particular board. The
minimum achievable base sample time for this model using an ode4 fixed-step
integration algorithm is 11 µs with signal logging disabled and 12 µs with
signal logging enabled. This equals a sample rate of almost 100 kHz. The
achievable sample time for the same model in interrupt mode is ~28 µs or a
sample rate of ~33 kHz. For this application, the overall performance increase
using polling mode is almost a factor of 3.

12-15

http://www.generalstandards.com

12 Interrupts Versus Polling

12-16

13

Incorporating Fortran
Code into the xPC Target
Environment

• “Before You Start” on page 13-2

• “Step-by-Step Example of Fortran and xPC Target” on page 13-5

13 Incorporating Fortran Code into the xPC Target™ Environment

Before You Start

In this section...

“Introduction” on page 13-2
“Simulink Demos Directory” on page 13-2
“Prerequisites” on page 13-3
“Steps to Incorporate Fortran in the Simulink Software for xPC Target”
on page 13-3

Introduction
The xPC Target product supports the incorporation of Fortran code into
Simulink models. This chapter describes how to incorporate Fortran into a
Simulink model for the xPC Target software.

The xPC Target product supports Fortran in Simulink models with
S-functions. (See “Creating Fortran S-Functions” in the Writing S-Functions
guide for a description of how to incorporate Fortran code into Simulink
models.) In that chapter, the sections “Creating Level-2 Fortran S-Functions”
and “Porting Legacy Code” are most applicable to the xPC Target software.

Simulink Demos Directory
The Simulink demos directory contains a tutorial and description on how to
incorporate Fortran code into a Simulink model using S-functions. To access
the tutorial and description,

1 In the MATLAB Command Window, type

demos

A list of MATLAB products appears on the left side of the window.

2 From the left side of the window, select Simulink, then Block
Diagramming Features.

A list of Simulink examples appears on the right side of the window.

13-2

Before You Start

3 Click Custom Code Blocks using the S-function API: M, C/C++,
Fortran, Ada).

The associated Simulink demos page opens.

4 Click Open this model.

S-function examples are displayed.

5 Double-click the Fortran S-functions block.

Fortran S-functions and associated templates appear.

Prerequisites
You must have xPC Target Version 1.3 or later to use Fortran for xPC Target
applications. xPC Target supports the Intel Visual Fortran Compiler 9.1.

Steps to Incorporate Fortran in the Simulink Software
for xPC Target
This topic lists the general steps to incorporate Fortran code into an xPC
Target application. Detailed commands follow in the accompanying examples.

1 Using the Fortran compiler, compile the Fortran code (subroutines (*.f)).
You will need to specify particular compiler options.

2 Write a Simulink C-MEX wrapper S-function. This wrapper S-function
calls one or more of the Fortran subroutines in the compiled Fortran object
code from step 1.

3 Use the mex function to compile this C-MEX S-function using a Visual
C/C++ compiler. Define several Fortran run-time libraries to be linked in.

This step creates the Simulink S-function MEX-file.

4 Run a simulation C-MEX file with the Simulink software to validate the
compiled Fortran code and wrapper S-function.

5 Copy relevant Fortran run-time libraries to the application build directory
for the xPC Target application build.

13-3

13 Incorporating Fortran Code into the xPC Target™ Environment

6 Define the Fortran libraries, and the Fortran object files from step 1, in the
Real-Time Workshop dialog box of the Simulink model. You must define
these libraries and files as additional components to be linked in when the
xPC Target application link stage takes place.

7 Initiate the xPC Target specific Real-Time Workshop build procedure for
the demo model. Real-Time Workshop builds and downloads xPC Target
onto the target PC.

13-4

Step-by-Step Example of Fortran and xPC Target™

Step-by-Step Example of Fortran and xPC Target

In this section...

“In This Example” on page 13-5
“Creating an xPC Target Atmosphere Model for Fortran” on page 13-5
“Compiling Fortran Files” on page 13-7
“Creating a C-MEX Wrapper S-Function” on page 13-8
“Compiling and Linking the Wrapper S-Function” on page 13-12
“Validating the Fortran Code and Wrapper S-Function” on page 13-14
“Preparing the Model for the xPC Target Application Build” on page 13-15
“Building and Running the xPC Target Application” on page 13-16

In This Example
This example uses the demo Atmosphere model that comes with the Simulink
product. The following procedures require you to know how to write Fortran
code appropriate for the Simulink and xPC Target software. See “Creating
Fortran S-Functions” in theWriting S-Functions guide for these details.

Before you start, create an xPC Target Simulink model for the Atmosphere
model. See “Creating an xPC Target Atmosphere Model for Fortran” on page
13-5.

Creating an xPC Target Atmosphere Model for
Fortran
To create an xPC Target Atmosphere model for Fortran, you need to add an
xPC Target Scope block to the sfcndemo_atmosmodel. Perform this procedure
if you do not already have an xPC Target Atmosphere model for Fortran.

1 From the MATLAB window, change directory to the working directory, for
example, xpc_fortran_test.

13-5

13 Incorporating Fortran Code into the xPC Target™ Environment

2 Type

sfcndemo_atmos

The sfcndemo_atmos model is displayed.

3 Add an xPC Target Scope block of type Target.

4 Connect this Scope block to the Tamb, K signal.

The model sfcndemo_atmos.mdl should look like the figure shown.

5 Double-click the target Scope block.

6 From the Scope mode parameter, choose Graphical rolling.

7 For the Number of samples parameter, enter 240.

13-6

Step-by-Step Example of Fortran and xPC Target™

8 Click Apply, then OK.

9 Double-click the Sine Wave block.

10 For the Sample time parameter, enter 0.05.

11 Click OK.

12 From the File menu, click Save as. Browse to your current working
directory, for example, xpc_fortran_test. Enter a filename. For example,
enter fortran_atmos_xpc and then click Save.

Your next task is to compile Fortran code. See “Compiling Fortran Files”
on page 13-7.

Compiling Fortran Files

1 In the MATLAB Command Window, change directory to
matlabroot\simulink\src.

2 Copy the file sfun_atmos_sub.f into your Fortran working directory,
for example, xpc_fortran_test. This is the sample Fortran code that
implements a subroutine for the Atmosphere model.

3 From Fortran_compiler_dir\IA32\Lib, copy the following files to the
working directory:

• libifcore.lib

• libifcoremd.lib

• ifconsol.lib

• libifportmd.lib

• libifport.lib

• libmmd.lib

• libm.lib

• libirc.lib

• libmmt.lib

13-7

13 Incorporating Fortran Code into the xPC Target™ Environment

• libifcoremt.lib

4 From a DOS prompt, change directory to the working directory and create
the object file. For example:

ifort /fpp /Qprec /c /nologo /MT /fixed /iface:cref -Ox sfun_atmos_sub

Your next task is to create a wrapper S-function. See “Creating a C-MEX
Wrapper S-Function” on page 13-8.

Creating a C-MEX Wrapper S-Function
This topic describes how to create a C-MEX wrapper S-function for the
Fortran code in sfun_atmos_sub.f. This function is a level 2 S-function. It
incorporates existing Fortran code into a Simulink S-function block and lets
you execute Fortran code from the Simulink software. Before you start,

• Ensure that you have compiled your Fortran code. See “Compiling Fortran
Files” on page 13-7.

• Be familiar with writing Simulink S-functions. In particular, read
“Creating Fortran S-Functions” in the Writing S-Functions guide. Note
the “Creating Level-2 Fortran S-Functions” section. This section lists
guidelines for creating Fortran level 2 S-functions, including calling
conventions.

• Refer to “S-Function Callback Methods — Alphabetical List” in the Writing
S-Functions guide. The Simulink software invokes these methods when
simulating a model with S-functions.

• Refer to the “SimStruct Functions — Alphabetical List” in the Writing
S-Functions guide for detailed descriptions of the functions that access the
fields of an S-function’s simulation data structure (SimStruct). S-function
callback methods use these functions to store and retrieve information
about an S-function.

The following procedure outlines the steps to create a C-MEX wrapper
S-function to work with sfun_atmos_sub.f. It uses the template file
matlabroot\simulink\src\sfuntmpl_gate_fortran.c.

13-8

Step-by-Step Example of Fortran and xPC Target™

Note This topic describes how to create a level 2 Fortran S-function
for the fortran_atmos_xpc model. This file is also provided in
matlabroot\simulink\src\sfun_atmos.c.

1 Copy the file matlabroot\simulink\src\sfuntmpl_gate_fortran.c to
your working directory.

This is your C-MEX file for calling into your Fortran subroutine. It works
with a simple Fortran subroutine.

2 With a text editor of your choice, open sfuntmpl_gate_fortran.c.

3 Inspect the file. This is a self-documenting file.

This file contains placeholders for standard Fortran level 2 S-functions,
such as the S-function name specification and Simulink callback methods.

4 In the #define S_FUNCTION_NAME definition, add the name of your
S-function. For example, edit the definition line to look like

#define S_FUNCTION_NAME sfun_atmos

5 In the file, read the commented documentation for fixed-step and
variable-step fixed algorithm support.

6 Delete or comment out the code for fixed-step and variable-step
fixed-algorithm support. You do not need these definitions for this example.

7 Find the line that begins extern void nameofsub_. Specify the function
prototype for the Fortran subroutine. For the sfun_atmos_sub.obj
executable, the Fortran subroutine is atmos_. Replace

extern void nameofsub_(float *sampleArgs, float *sampleOutput);

with

extern void atmos_(float *falt, float *fsigma, float *fdelta, float *ftheta);

Enter a #if defined/#endif statement like the following for Windows
compilers.

13-9

13 Incorporating Fortran Code into the xPC Target™ Environment

#ifdef _WIN32
#define atmos_ atmos
#endif

8 Add a typedef to specify the parameters for the block. For example,

typedef enum {T0_IDX=0, P0_IDX, R0_IDX, NUM_SPARAMS } paramIndices;

#define T0(S) (ssGetSFcnParam(S, T0_IDX))

#define P0(S) (ssGetSFcnParam(S, P0_IDX))

#define R0(S) (ssGetSFcnParam(S, R0_IDX))

9 Use the mdlInitializeSizes callback to specify the number of inputs,
outputs, states, parameters, and other characteristics of the S-function.
S-function callback methods use SimStruct functions to store and retrieve
information about an S-function. Be sure to specify the temperature,
pressure, and density parameters. For example,

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S,NUM_SPARAMS); /* expected number */

#if defined(MATLAB_MEX_FILE)

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) goto EXIT_POINT;

#endif

{

int iParam = 0;

int nParam = ssGetNumSFcnParams(S);

for (iParam = 0; iParam < nParam; iParam++)

{

ssSetSFcnParamTunable(S, iParam, SS_PRM_SIM_ONLY_TUNABLE);

}

}

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 0);

ssSetNumInputPorts(S, 1);

ssSetInputPortWidth(S, 0, 3);

ssSetInputPortDirectFeedThrough(S, 0, 1);

ssSetInputPortRequiredContiguous(S, 0, 1);

13-10

Step-by-Step Example of Fortran and xPC Target™

ssSetNumOutputPorts(S, 3);

ssSetOutputPortWidth(S, 0, 3); /* temperature */

ssSetOutputPortWidth(S, 1, 3); /* pressure */

ssSetOutputPortWidth(S, 2, 3); /* density */

#if defined(MATLAB_MEX_FILE)

EXIT_POINT:

#endif

return;

}

10 Use the mdlInitializeSampleTimes callback to specify the sample rates
at which this S-function operates.

static void mdlInitializeSampleTimes(SimStruct *S)
{

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);
ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

11 Use the mdlOutputs callback to compute the signals that this block emits.

static void mdlOutputs(SimStruct *S, int_T tid)
{

double *alt = (double *) ssGetInputPortSignal(S,0);
double *T = (double *) ssGetOutputPortRealSignal(S,0);
double *P = (double *) ssGetOutputPortRealSignal(S,1);
double *rho = (double *) ssGetOutputPortRealSignal(S,2);
int w = ssGetInputPortWidth(S,0);
int k;
float falt, fsigma, fdelta, ftheta;

for (k=0; k<w; k++) {

/* set the input value */
falt = (float) alt[k];

/* call the Fortran routine using pass-by-reference */
atmos_(&falt, &fsigma, &fdelta, &ftheta);

13-11

13 Incorporating Fortran Code into the xPC Target™ Environment

/* format the outputs using the reference parameters */
T[k] = mxGetScalar(T0(S)) * (double) ftheta;
P[k] = mxGetScalar(P0(S)) * (double) fdelta;
rho[k] = mxGetScalar(R0(S)) * (double) fsigma;

}
}

12 Use the mdlTerminate callback to perform any actions required at
termination of the simulation. Even if you do not have any operations here,
you must include a stub for this callback.

static void mdlTerminate(SimStruct *S)
{
}

13 In the file, read the commented documentation for the following callbacks:

• mdlInitalizeConditions — Initializes the state vectors of this
S-function.

• mdlStart— Initializes the state vectors of this S-function. This function
is called once at the start of the model execution.

• mdlUpdate — Updates the states of a block.

These are optional callbacks that you can define for later projects. You do
not need to specify these callbacks for this example.

14 Delete or comment out the code for these callbacks.

15 Save the file under another name. For example, save this file as
sfun_atmos.c. Do not overwrite the template file.

16 Copy the file sfun_atmos.c into your Fortran working directory, for
example, xpc_fortran_test.

Your next task is to compile and link the wrapper S-function. See “Compiling
and Linking the Wrapper S-Function” on page 13-12.

Compiling and Linking the Wrapper S-Function
This topic describes how to create (compile and link) a C-MEX S-function from
the sfun_atmos.c file. Before you start, ensure that the following files are in

13-12

Step-by-Step Example of Fortran and xPC Target™

the working directory, xpc_fortran_test. You should have copied these files
when you performed the steps in “Compiling Fortran Files” on page 13-7.

• libifcore.lib

• libifcoremd.lib

• ifconsol.lib

• libifportmd.lib

• libifport.lib

• libmmd.lib

• libm.lib

• libirc.lib

• libmmt.lib

• libifcoremt.lib

Use the mex command with a C/C++ compiler such as Microsoft Visual C/C++
Version 6.0.

This topic assumes that you have created a C-MEX wrapper S-function. See
“Creating a C-MEX Wrapper S-Function” on page 13-8.

Invoking the mex command includes the following steps:

1 Compile the wrapper C file sfun_atmos.c. Be sure to link in the following:

• Compiled Fortran code: sfun_atmos_sub.obj

• Necessary Fortran run-time libraries to resolve external function
references and the Fortran run-time environment

13-13

13 Incorporating Fortran Code into the xPC Target™ Environment

2 Mex the code. For example

mex -v LINKFLAGS="$LINKFLAGS /NODEFAULTLIB:libcmt.lib libifcoremd.lib

ifconsol.lib libifportmd.lib libmmd.lib libirc.lib" sfun_atmos.c

sfun_atmos_sub.obj

Ensure that this whole command is all on one line. This command compiles
and links the sfun_atmos_sub.c file. It creates the sfun_atmos.mex file in
the same directory.

Your next task is to validate the Fortran code and wrapper S-function. See
“Validating the Fortran Code and Wrapper S-Function” on page 13-14.

Validating the Fortran Code and Wrapper S-Function
Validate the generated C-MEX S-function, sfun_atmos.mex. Bind the C-MEX
S-function to an S-function block found in the Simulink block library. You
can mask the S-function block like any other S-function block to give it a
specific dialog box.

This topic assumes that you have compiled and linked a wrapper S-function.
See “Compiling and Linking the Wrapper S-Function” on page 13-12.

The Atmosphere model example has a Simulink model associated with it.

1 In the MATLAB window, type

fortran_atmos_xpc

This opens the Simulink model associated with the Atmosphere model.
This model includes the correct S-function block that is bound to
sfun_atmos.mex.

2 Select the Simulation menu Start option to simulate the model.

3 Examine the behavior of the Atmosphere model by looking at the signals
traced by the Scope block.

Your next task is to prepare the model to build an xPC Target application. See
“Preparing the Model for the xPC Target Application Build” on page 13-15.

13-14

Step-by-Step Example of Fortran and xPC Target™

Preparing the Model for the xPC Target Application
Build
Before you build the Atmosphere model for xPC Target, define the following
build dependencies:

• The build procedure has access to sfun_atmos.sub.obj for the link stage.

• The build procedure has access to the Fortran run-time libraries (see
“Compiling and Linking the Wrapper S-Function” on page 13-12) for the
link stage.

This topic assumes that you have validated the Fortran code and wrapper
S-function (see “Validating the Fortran Code and Wrapper S-Function” on
page 13-14).

1 In the MATLAB window, type

fortran_atmos_xpc

This opens the Simulink model associated with the Atmosphere model.

2 In the Simulink model, from the Simulation menu, click Configuration
Parameters.

The Configuration Parameters dialog box appears.

3 In the left pane, click the Real-Time Workshop node.

The Real-Time Workshop pane opens.

4 In the Target selection section, click the Browse button at the System
target file list.

5 Click xpctarget.tlc.

6 In the Make command field, replace make_rtw with one for the Fortran
compiler.

make_rtw S_FUNCTIONS_LIB="..\sfun_atmos_sub.obj ..\libifcoremt.lib ..\libmmt.lib

..\ifconsol.lib ..\libifport.lib ..\libirc.lib"

Ensure that the whole command is all on one line.

13-15

13 Incorporating Fortran Code into the xPC Target™ Environment

7 Click Apply.

8 Click OK.

9 From the File menu, click Save.

This command requires that the application build directory be the current
directory (one level below the working directory, xpc_fortran_test). Because
of this, all additional dependency designations must start with ..\.

Specify all Fortran object files if your model (S-Function blocks) depends
on more than one file. For this example, you specify the run-time libraries
only once.

Your next task is to build and run the xPC Target application. See “Building
and Running the xPC Target Application” on page 13-16.

Building and Running the xPC Target Application
This topic assumes that you have prepared the model to build an xPC Target
application. See “Preparing the Model for the xPC Target Application Build”
on page 13-15.

Build and run the xPC Target application as usual. Be sure that you have
defined Microsoft Visual C/C++ as the xPC Target C compiler using.

After the build procedure succeeds, xPC Target automatically downloads the
application to the target PC. The Atmosphere model already contains an xPC
Target Scope block. This allows you to verify the behavior of the model. You
will be able to compare the signals displayed on the target screen with the
signals obtained earlier by the Simulink simulation run (see “Validating the
Fortran Code and Wrapper S-Function” on page 13-14).

13-16

14

Troubleshooting

• “Overview” on page 14-2

• “BIOS Settings” on page 14-3

• “Booting Issues” on page 14-4

• “Communications” on page 14-6

• “Installation, Configuration, and Build Troubleshooting” on page 14-10

• “General xPC Target Troubleshooting” on page 14-19

• “Getting Updated xPC Target Releases and Help” on page 14-33

14 Troubleshooting

Overview
This chapter describes guidelines, hints, and tips for questions
or issues you might have while using the xPC Target product.
Refer to The MathWorks Support xPC Target Web site
(http://www.mathworks.com/support/product/XP) for specific
troubleshooting solutions. The xPC Target documentation is also available
from this site.

14-2

http://www.mathworks.com/support/product/XP

BIOS Settings

BIOS Settings
The BIOS settings of a PC system can affect how the PC works. If you
experience problems using the xPC Target software with the target or host
PC, you should check the system BIOS settings. These settings are beyond
the control of the xPC Target product. See “The xPC Target Software and the
Target PC BIOS” in the xPC Target Getting Started Guide.

Incorrect BIOS settings can cause questions like the following:

• Why can getxpcpci detect PCI boards, but autosearch -l cannot?

• Why can my stand-alone application run on some target PCs, but not
others?

• Why is my target PC crashing while downloading applications?

• Why is my target PC104 hanging on boot?

• Why is my boot time slow?

• Why is my software not running in real time?

14-3

14 Troubleshooting

Booting Issues

In this section...

“Is Your Host PC MATLAB Interface Halted?” on page 14-4
“Is Your Target PC Unable to Boot?” on page 14-4
“Is the Target PC Halted?” on page 14-5

Is Your Host PC MATLAB Interface Halted?
If your host PC MATLAB interface halts while creating an xPC Target boot
disk or image,

• Use another disk or CD to create the xPC Target boot disk.

• If your host PC has antivirus software, it might conflict with the MATLAB
software. Disable the software while using the MATLAB interface.

• Verify that the host PC 3.5-inch disk drive is accessible. If it is not
accessible, replace the 3.5-inch disk drive.

Is Your Target PC Unable to Boot?
If your target PC cannot boot with the xPC Target boot disk or image,

• Use another disk or CD and create a new xPC Target boot disk.

• Verify that the current properties on the xPC Target boot disk correspond
to the environment variables of xPC Target Explorer.

• Verify that the xPC Target boot disk contains files like the following:

- BOOTSECT.RTT

- XPCTGB1.RTA

Note that the name of the last file varies depending on the communication
method.

• If any of these files are not present, reinstall the software. This should fix
any corrupted files from the previous (initial) installation.

• If problems persist, see “Troubleshooting the Boot Process” of the xPC
Target Getting Started Guide.

14-4

Booting Issues

• If you still cannot boot the target PC from a boot disk, you might need to
replace the target PC 3.5-inch or CD disk drive.

Is the Target PC Halted?
If your target PC displays a System Halted message while booting,

• Verify that the TcpIp target driver parameter is configured correctly in
xPC Target Explorer, recreate the xPC Target boot disk, and use that new
disk to boot the target PC.

• Ensure that the xPC Target software supports your target PC hardware.
Be sure to verify the network communication hardware.

14-5

14 Troubleshooting

Communications

In this section...

“Is There Communication Between Your PCs?” on page 14-6
“Why Does the xPC Target System Lose Connection with the Host PC When
Downloading Some Models?” on page 14-7
“How Can I Diagnose Network Problems with the xPC Target System?”
on page 14-9

Is There Communication Between Your PCs?
Use the following MATLAB commands from the host PC to validate the
host/target setup:

• xpctargetping

• xpctest

The xpctargetping command performs a basic communication check between
the host and target PC. This command returns success only if the xPC
Target kernel is loaded and is running and the communication between host
and target PC is working properly. Use this command for a quick check of the
communication between the host PC and target PC.

The xpctest command performs a series of tests on your xPC Target system.
These tests range from performing a basic communication check to building
and running target applications. At the end of each test, the command
returns an OK or failure message. If the test is inappropriate for your setup,
the command returns a SKIPPED message. Use this command for a thorough
check of your xPC Target installation.

Communication errors might also occur in the following instances:

• The target PC is running an old xPC Target boot disk or boot image that is
not in sync with the xPC Target release installed on the host PC. Create
a new boot disk or image for each new release.

14-6

Communications

• If the communication between the host PC and target PC is TCP/IP, set the
host PC network interface card (NIC) card and hub to half-duplex mode.
Do not set the mode to full-duplex mode.

• If you have an active firewall in your system, you might experience
communication errors. For example, The MathWorks is aware of build
errors that might occur if you try to build and download a model with a
thermocouple board (causing a slower initialization time) in a system that
contains a firewall. To work around this issue, you can add the MATLAB
interface to the firewall exception list.

• If there are BIOS problems. Be sure to read “The xPC Target Software
and the Target PC BIOS”.

• The xPC Target product supports a number of Ethernet cards and chips,
as described in “Hardware for Network Communication” in xPC Target
Getting Started Guide. If your target PC has more than one of these cards
or chips installed, such as an on-board Ethernet controller, disable or
remove the controller that you will not use. For example, you can disable
the on-board Ethernet controller through the target PC BIOS. An xPC
Target host PC cannot communicate with a target PC that has two ore
more Ethernet controllers that are supported by the xPC Target product.
Failure to disable extra Ethernet cards or onboard controllers might cause
timeout problems between the host PC and target PC.

Why Does the xPC Target System Lose Connection
with the Host PC When Downloading Some Models?
If you are using xPC Target hardware in a model, downloading the model
might cause a loss of communication between the target PC and host PC if
either of the following is true:

• The referenced xPC Target board has an initialization time that is too slow.

• The referenced xPC Target driver has a problem.

xPC Target I/O Boards with Slow Initialization Times
Some xPC Target boards have an initialization time that is too slow. This
might cause software to run out of time before a model downloads, causing
the host PC to disconnect from the target PC.

14-7

14 Troubleshooting

By default, if the host PC does not get a response from the target PC after
downloading a target application and waiting 5 seconds, the host PC software
times out. The target PC responds only after downloading and initializing
the target application.

Usually 5 seconds is enough time to initialize a target application, but
in some cases it might not be sufficient. The time to download a target
application mostly depends on your I/O hardware. For example, thermocouple
hardware (such as the PCI-DAS-TC board) takes longer to initialize. With
slower hardware, you might also get errors when building and downloading
an associated model. Even though the target PC is fine, a false time-out is
reported and you might get an error like the following:

"cannot connect to ping socket"

This is not a fatal error. You can reestablish communication with the
following procedure:

1 At the MATLAB Command Window, issue the xpctargetping command.
For example,

xpctargetping

2 Wait for the system to return from the xpctargetping.

3 Restart the target object.

Alternatively, you can increase the time-out value, using the following
procedure:

1 In your MATLAB working directory, create a file called xpcdltimeout.dat.

2 In this file, put an integer value. For example, enter

20

In this case, the host PC waits for about 20 seconds before declaring that
a time-out has occurred. Note that it does not take 20 seconds for every
download. The host PC polls the target PC about once every second, and if
a response is returned, declares success. Only in the case where a download
really fails does it take the full 20 seconds.

14-8

Communications

If the file xpcdltimeout.dat exists, it is read once before every download. To
change the time-out value, change the number in this file. Setting the time-out
to 5 is the same as the default. Note also that simply removing the file does
not change the time-out to the default value. The xPC Target software uses
the last value you entered until you restart the MATLAB interface.

xPC Target Driver Software Issues
If there really is an error in a driver that causes the xPC Target system to
crash, a time-out occurs and xpctargetping fails with an error message. In
such an event, you need to reboot the target and reestablish communication
between the host PC and target PC.

To get yourself back up and running,

1 Remove the reference to the problem driver from the model.

2 Reboot the target PC.

3 At the MATLAB command line, issue xpctargetping to reestablish
communications.

4 If the driver with which you are having problems is one provided by The
MathWorks, try to pinpoint the problem area (for example, determine
whether certain settings in the driver block cause problems).

Alternatively, you can exit and restart the MATLAB interface.

How Can I Diagnose Network Problems with the
xPC Target System?
If you experience network problems when using this product,
refer to The MathWorks Support xPC Target Web site
(http://www.mathworks.com/support/product/XP). This Web
site has the most up-to-date information about this topic.

14-9

http://www.mathworks.com/support/product/XP

14 Troubleshooting

Installation, Configuration, and Build Troubleshooting

In this section...

“Troubleshooting xpctest Results” on page 14-10
“Troubleshooting Build Issues” on page 14-17

Troubleshooting xpctest Results
The following are some issues you might encounter while running xpctest
to check the xPC Target installation and configuration. xpctest runs eight
subtests.

• “xpctest: Test 1 Fails” on page 14-10

• “xpctest: Test 2 Fails” on page 14-11

• “xpctest: Test 3 Fails” on page 14-12

• “xpctest: Test 4 Fails” on page 14-13

• “xpctest: Test 5 Fails” on page 14-14

• “xpctest: Test 6 Fails” on page 14-15

• “xpctest: Test 7 Fails” on page 14-15

• “xpctest: Test 8 Fails” on page 14-16

This topic assumes that you have read “Testing and Troubleshooting the
Installation” in the xPC Target Getting Started Guide.

xpctest: Test 1 Fails
First, perform the procedure described in the “Test 1, Ping Target System
Standard Ping” section in the xPC Target Getting Started Guide.

Note You can ignore this topic if you are using a serial connection. Test
1 is skipped for serial connections.

14-10

Installation, Configuration, and Build Troubleshooting

If you are using a TCP/IP connection and need more help with Test 1, check
the following:

• Be sure to use only supported Ethernet cards on the target PC. See
“Ethernet Chip Families Supported by the xPC Target Product” of the
xPC Target Getting Started Guide for further details, including supported
Ethernet chip sets and cards.

• Verify that your hardware is operating correctly. For example, check for
faulty network cables and other hardware.

• If you run xpctest from a UNC network directory, such as
\\Server\user\work, a workaround is to change the current MATLAB
directory to a local directory and run the test again.

xpctest: Test 2 Fails
First, follow the procedure described in “Test 2, Ping Target System xPC
Target Ping” section in the xPC Target Getting Started Guide.

If you need more help with Test 2, check the following:

• Use the PC MATLAB command to check the environment variables, in
particular Target PC IP address. If Test 1 passes but Test 2 fails, you
might have entered an incorrect IP address.

• If you have a TCP/IP connection, make sure you are using a supported
Ethernet card (see “xpctest: Test 1 Fails” on page 14-10).

• For an RS-232 connection,

- Use a null modem cable (see “Hardware for Serial Communication”
section in the xPC Target Getting Started Guide). If you do not use a null
modem cable for an RS-232 connection, communication between the host
and target PCs will fail. A null modem cable is shipped with the product.

- If you do have a null modem cable, check the COM ports on the host and
target PC. For example, ensure that the ports are enabled, you have
connected the appropriate COM port, and the COM port matches that
for which it is specified

- Ensure that the COM ports on the host and target PCs are enabled in
the BIOS. If they are disabled, Test 2 fails.

14-11

14 Troubleshooting

xpctest: Test 3 Fails
First, follow the procedure in “Test 3, Reboot Target Using Direct Call” in the
xPC Target Getting Started Guide.

If you need more help with Test 3, check the following:

• Did you get the following error?

- ReadFile Error: 6

Older xPC Target releases might receive this error. This message might
occur if the host PC initiates communication with the target PC while the
target PC is rebooting, but the kernel on the target PC has not yet loaded.
As a workaround, run xpctest with the noreboot option. For example,

xpctest('-noreboot')

This command runs the test without trying to reboot the target PC. It
displays the following message:

Test 3, Software reboot the target PC: ... SKIPPED

• If you directly or indirectly modify the xpcosc demo mode that is supplied
with the product, Test 3 is likely to fail. To pass this test, restore the
original xpcosc demo model, using one of the following methods:

- (Preferred) Download a new copy of the model from the MathWorks FTP
site (ftp://ftp.mathworks.com/pub/tech-support/xpcosc_model/).
Overwrite the old xpcosc model with this new one in the directory

matlabroot\toolbox\rtw\targets\xpc\xpcdemos

- Recreate the original model.

- Reinstall the software.

Note Do not modify any of the files that are installed with the xPC Target
software. If you want to modify one of these files, copy the file and modify
the copy.

14-12

ftp://ftp.mathworks.com/pub/tech-support/xpcosc_model/

Installation, Configuration, and Build Troubleshooting

xpctest: Test 4 Fails
First, follow the procedure in the “Test 4, Build and Download Application” in
the xPC Target Getting Started Guide.

If you need more help with Test 4, check the following:

• Verify that a supported compiler is being used.

• If the communication between the host PC and target PC is TCP/IP, set the
host PC network interface card (NIC) card and hub to half-duplex mode.
Do not set the mode to full-duplex mode.

• Verify the specified path to the supported compiler. You need only the root
path to the compiler, not the full path. If you incorrectly specify a path,
you might get the following error:

Error executing build command: Error using ==> make_rtw
Error using ==> rtw_c (SetupForVisual)
Invalid DEVSTUDIO path specified

or the following error:

Error executing build command: Error using ==> make_rtw
Error using ==> rtw_c
Errors encountered while building model "xpcosc"

with the following MATLAB Command Window error:

NMAKE: fatal error U1064: MAKEFILE not found and no target
specified
Stop.

To correct these errors,

1 Ensure that your compiler is properly installed. For example, all Microsoft
Visual compiler components must be in the Microsoft® Visual Studio®
folder after installation.

2 At the MATLAB prompt, type

xpcexplr

14-13

14 Troubleshooting

3 In the Select C compiler field, select the appropriate compiler type
(VisualC or Watcom).

4 In the Compiler Path field, enter the root path to the compiler. For
example,

d:\applications\microsoft visual studio

Do not add a terminating back slash (\) at the end of the path.

If you still have problems, and you see the following MATLAB Command
Window error:

ReadFile failed while reading from COM-port

1 Check the state of your target PC. If it is unresponsive, you might need to
reboot the target PC.

2 In the xPC Target Explorer, try to connect to the target PC again. Be sure
to also check the serial connection between the host PC and target PC.

xpctest: Test 5 Fails
This error occurs only when the environment variable settings are out of date.

To correct this, perform the following. See “xPC Target Boot Options” in the
xPC Target Getting Started Guide for instructions on how to work with boot
options.

1 At the MATLAB prompt, start xPC Target Explorer. For example,

xpcexplr

2 Inspect the environment variables for the problem target PC.

3 If you have xPC Target Embedded Option installed, ensure that, in the
Configuration section, you have selected the Standalone tab.

4 Make necessary changes.

5 Select the tab for your boot mode. For example, CD Boot.

14-14

Installation, Configuration, and Build Troubleshooting

6 Create the boot disk or boot image.

7 Reboot the target PC.

8 Rerun xpctest.

If this procedure does not resolve the issue, perform the following:

1 At the MATLAB command line, type updatexpcenv. For example,

updatexpcenv

2 Recreate the boot disk or image using xpcbootdisk.

3 Reboot the target PC.

4 Rerun xpctest.

xpctest: Test 6 Fails
This test runs the basic target object constructor, xpc. This error rarely occurs
unless an earlier test has failed.

To correct this, perform the following,

1 At the MATLAB command line, refer to and read the xpc reference page.
For example,

help xpc

2 Follow any guidance that might be helpful.

3 Reboot the target PC.

4 Rerun and check the results of earlier tests and make the necessary
corrections.

xpctest: Test 7 Fails
This test executes a target application (xpcosc) on the target PC. This test
will fail if you change the xpcosc model start time to something other than 0,

14-15

14 Troubleshooting

such as 0.001. This change causes the test, and the MATLAB interface itself,
to halt. To correct this, set the xpcosc model start time back to 0.

xpctest: Test 8 Fails
This test executes a target application (xpcosc) on the target PC. This test
might fail if you change the xpcosc model (for example, if you remove the
Outport block).

To correct this, perform one of the following:

• Set the model back to the original configuration.

• Download a new copy of the model from the MathWorks Web site,
depending on the desired version.

- http://www.mathworks.com/access/pub/xpcosc_model/R12p1version.zip

- http://www.mathworks.com/access/pub/xpcosc_model/R13version.zip

- http://www.mathworks.com/access/pub/xpcosc_model/R14version.zip

Overwrite the old xpcosc model in the directory

matlabroot\toolbox\rtw\targets\xpc\xpcdemos

• Reinstall the software.

Other issues might also cause this test to fail. If you still need more help,
check the following:

• There is a known issue with xPC Target software version
1.3. It might occur when you run xpctest two consecutive
times. See the known issue and solution documented in
http://www.mathworks.com/support/solutions/data/1-18DTB.html.

• If you are running a new xPC Target release, be sure that you have a new
boot disk or image for this release. See “Are You Working with a New
xPC Target Release?” on page 14-33.

If you are installing another version of the xPC Target software on top of an
existing version, check the version number of the current installation. At the
MATLAB command line, type xpclib. The version number appears at the

14-16

http://www.mathworks.com/access/pub/xpcosc_model/R12p1version.zip
http://www.mathworks.com/access/pub/xpcosc_model/R13version.zip
http://www.mathworks.com/access/pub/xpcosc_model/R14version.zip
http://www.mathworks.com/support/solutions/data/1-18DTB.html

Installation, Configuration, and Build Troubleshooting

bottom of the xPC Target block library pop-up window. If the version number
is not the one to which you want to upgrade, reinstall the software.

Troubleshooting Build Issues
The following are some questions you might have when building target
applications.

• “Why Is an Error Received While Downloading to the Target PC, but the
Host PC Indicates a Successful Download?” on page 14-17

• “How Can I Build a Model That Contains a CAN Board?” on page 14-18

• “Why Do I Get Target Ping Failures or the MATLAB Interface Freezes
During the Build Process?” on page 14-18

Why Is an Error Received While Downloading to the Target PC,
but the Host PC Indicates a Successful Download?
If you boot up a target PC with a boot disk or image from a previous release,
then build and download a target application from a host PC running a later
release of the xPC Target software, the host PC might indicate a successful
download. However, the target PC might display an error message like the
following:

rt_init timing engine not found

This is because the xPC Target software on the boot disk or in the boot image
did not match the version of xPC Target software running on the host PC.
As a general rule, you must always create a new boot disk or image with a
new xPC Target release or upgrade.

To resolve this, create a new boot disk or image, using the host PC xPC Target
software, and reboot the target PC with the new boot disk or image.

Note You should properly label and store old boot disks in case you need to
use them again.

14-17

14 Troubleshooting

How Can I Build a Model That Contains a CAN Board?
The procedure to build a model with CAN blocks differs as follows:

• In releases prior to R14SP1 (xPC Target software version 2.6.1), if you want
to use the target PC in a CAN network, set up the xPC Target environment
for a CAN library. If you do not configure a CAN library into the system,
you will get CAN errors when building the target application.

In xPC Target software version 2.6.1 and later, the software selects the
appropriate CAN library for you.

More Help. If the preceding procedures do not resolve the issue, and if you
can build a target application with the CAN board in your model but cannot
download that application to the target,

• Ensure that you are using a supported CAN board.

• In releases prior to R14SP1 (xPC Target software version 2.6.1), ensure
that you selected the correct choice from the Can Library parameter in
the xPC Target Explorer.

Why Do I Get Target Ping Failures or the MATLAB Interface
Freezes During the Build Process?
A target ping failure might occur when you build a target application that
has a long initialization process (for example, models that use thermocouple
boards). You might need to increase the time-out value. See “Increasing the
Time-Out Value” of the xPC Target Getting Started Guide.

If you have target ping failures and the MATLAB interface freezes, this
is likely the combined result of an active firewall and a long initialization
process. To correct this problem, see “Is There Communication Between Your
PCs?” on page 14-6.

14-18

General xPC Target™ Troubleshooting

General xPC Target Troubleshooting

In this section...

“General I/O Troubleshooting Guidelines” on page 14-19
“Can I View the Contents of the Target PC Display on the Host PC?” on
page 14-20
“Why Do Attempts to Run My Model Cause CPU Overload Messages on the
Target PC?” on page 14-20
“How Can I Obtain PCI Board Information for My xPC Target System?” on
page 14-25
“What Sample Time Can I Expect from the xPC Target Software?” on
page 14-26
“Why Is My Requested xPC Target Sample Time Different from the
Measured Sample Time?” on page 14-26
“Why Did I Get Error -10: Invalid File ID on the Target PC?” on page 14-28
“Can I Write Custom xPC Target Device Drivers?” on page 14-28
“Can I Create a Stand-Alone xPC Target Application to Interact with a
Target Application?” on page 14-29
“Can Signal Outputs from Virtual Blocks Be Tagged?” on page 14-29
“Why Has the Stop Time Changed?” on page 14-30
“Why Do I Get a File System Disabled Error?” on page 14-30
“Can the Target PC Hard Drive Contain Multiple Partitions?” on page 14-31
“Why Does the getparamid Function Return Nothing?” on page 14-31
“How Do I Handle Register Rollover for xPC Target Encoder Blocks?” on
page 14-31

General I/O Troubleshooting Guidelines
If you encounter issues using the xPC Target I/O drivers,

• Ensure that you have properly configured the driver.

• Ensure that you are using the latest version of the software.

14-19

14 Troubleshooting

• Test the hardware using the available diagnostic software included with
the I/O board from the manufacturer.

• Try a different target PC to verify the behavior.

• Report the issue to The MathWorks Support at
http://www.mathworks.com/support/contact_us/index.html.

Can I View the Contents of the Target PC Display on
the Host PC?
From the host PC, you can view the target PC monitor with the MATLAB
xpctargetspy command. For example

xpctargetspy('TargetPC1')

The Real-Time xPC Target Spy window is displayed on the host PC monitor.

Why Do Attempts to Run My Model Cause CPU
Overload Messages on the Target PC?
A CPU overload is not an error in the software. This condition indicates that
the CPU was unable to complete processing a model time step before being
asked to restart.

This error might occur if you have

• Real CPU overloads — Those caused by model design and/or target PC
resources in use. For example, a model is trying to do more than can be
done in the allocated time on the target PC. Possible reasons are:

- The target PC is too slow or the model sample is too small (see “Dealing
with Small Model Sample Times” on page 14-21)

- Model is too complex (algorithmic complexity)

- I/O Latency, where each I/O channel used introduces latency into the
system. This might cause the execution time to exceed the model time
step.

Spurious CPU overloads — Commonly caused by factors outside of the
model design. These overloads are most likely caused by one of the
following:

14-20

http://www.mathworks.com/support/contact_us/index.html

General xPC Target™ Troubleshooting

- BIOS settings (enabled Advanced Power Management, USB ports in
the target PC BIOS, or Plug and Play (PnP) (see “Target PC BIOS” on
page 14-21)

- System management interrupts (SMIs)

Dealing with Small Model Sample Times
If the model has too small a sample time, a CPU overload can occur. This
error indicates that to run the target application, executing one step of the
model requires more time than the sample time for the model (Fixed step
size property) allows.

When this error occurs, the target object property CPUoverload changes from
none to detected. To correct the issue, perform one of the following:

• Change the model Fixed step size property to a larger value and rebuild
the model. Use the Solver node in the Simulink model Configuration
Parameters dialog.

Remember that I/O can add significant latency to your model. You can use
the xPC Target Interactive Guide
(http://www.mathworks.com/support/product/XP/productnews/-
interactive_guide/xPC_Target_Interactive_Guide.html)
to find latency numbers for boards supported by the block library. For
example, if your application includes the National Instruments® PCI-6713
board, and you want to use four outputs.

1 Look up the board in the xPC Target Interactive Guide.

From the table, the D/A latency is 1+2.4N.

2 To get the latency for four outputs, calculate the latency

1+(2.4 x 4) = 10.6 microseconds

3 Include this value in your sample time calculations.

• Run the target application on a target PC with a faster processor.

Target PC BIOS
Undesirable behavior can occur if any of the following BIOS settings are
enabled:

14-21

http://www.mathworks.com/support/product/XP/productnews/interactive_guide/xPC_Target_Interactive_Guide.html
http://www.mathworks.com/support/product/XP/productnews/interactive_guide/xPC_Target_Interactive_Guide.html

14 Troubleshooting

• Advanced Power Management — Can cause CPU overload.

• USB ports — Can cause CPU overload.

• Plug-and-Play (PnP) operating system — Prevents PCI devices from
working properly.

• System Management Interrupts (SMIs) — Can prevent successful
operation of real-time software (cause CPU overloads).

Enabling any of these properties causes non-real-time behavior from the
target PC. You must disable these BIOS properties for the target PC to run
the target application properly in real time. See “The xPC Target Software
and the Target PC BIOS” in the xPC Target Getting Started Guide.

System Management Interrupts
To successfully operate real-time software on any microprocessor system,
you must control and manage all interrupt services, including system
management interrupts (SMIs). However, the operating system or the
application software cannot detect these interrupts.

In addition, your BIOS might not be able to disable SMIs.

For some chipsets, when you cannot disable SMIs from the BIOS, you can
programmatically prevent or disable SMIs. For example, see the Disabling
SMIs on Intel ICH5 Chipsets document at MATLAB Central for a solution to
disable SMIs in the Intel® ICH5 family.

Allow CPU Overloads
Typically, the xPC Target kernel halts model execution when it encounters
a CPU overload. You can direct the xPC Target environment to allow CPU
overloads using the following options in the TLC options parameter in the
Real-Time Workshop pane of the Simulink Configuration Parameters dialog
box:

Option Description Default

xPCMaxOverloads Number of acceptable overloads. 0

14-22

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18832&objectType;=file
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18832&objectType;=file

General xPC Target™ Troubleshooting

Option Description Default

xPCMaxOverloadLen Number of contiguous
acceptable overloads. If
you do not specify this option,
the default value is the same
as xPCMaxOverlaods. Specify
a value that is the same or
less than the value for the
xPCMaxOverloads option. You
should not a use value greater
than the xPCMaxOverloads
value.

Same as value of
xPCMaxOverloads

xPCStartupFlag Number of executions of
the model at startup,
where the timer interrupt
is temporarily disabled during
model execution. After
the model finishes the first
xPCStartupFlag number of
executions, the xPC Target
software enables the timer
interrupt, which will invoke the
next execution for the model.

1

When the xPC Target kernel runs the model, it checks the number of CPU
overloads against the values of xPCMaxOverloads and xPCMaxOverloadLen.
When the number of CPU overloads reaches the lower of these two values,
the xPC Target kernel stops executing the model.

For example, if you enter a line like the following for the TLC options
parameter:

-axPCMaxOverloads=30 -axPCOverLoadLen=2 -axPCStartupFlag=5

the xPC Target software ignores CPU overloads for the first five iterations
through the model. After this, the xPC Target software allows up to 30 CPU
overloads, preventing no more than two consecutive CPU overloads.

14-23

14 Troubleshooting

With the TLC options, you can use the following blocks in your model to help
keep track of the number of CPU overloads.

• Use the xPC Target Get Overload Counter and xPC Target Set Overload
Counter blocks to set and keep track of CPU overload numbers.

• Use the Pentium Time Stamp Counter block to profile your model.

Other Things to Try

• Run xpcbench at the MATLAB command line. For example

xpcbench('this')

This program accurately evaluates your system. The results indicate the
smallest base sample time that an xPC Target application can achieve on
your system. For more information on xpcbench, type help xpcbench at
the MATLAB prompt or see

http://www.mathworks.com/support/product/XP/
productnews/benchmarks.html

• Set up the xPC Target environment with a different target PC. Compare
the result with the original target PC.

• Perform optimizations such as:

- Optimize processing.

- Reduce number of I/O channels.

- Reduce data acquisition/logging.

- Disable graphics.

- Increase sample time.

- Partition the model and run it on multiple target PCs. This optimization
might require multitarget synchronization using CAN, UDP, parallel
port, or reflective memory.

• Use polling mode (if you do not need background tasks).

• Use clear error messages to help you debug.

14-24

http://www.mathworks.com/support/product/XP/productnews/benchmarks.html
http://www.mathworks.com/support/product/XP/productnews/benchmarks.html

General xPC Target™ Troubleshooting

How Can I Obtain PCI Board Information for My xPC
Target System?
This topic describes how to obtain information about the PCI devices in your
xPC Target system. This information is useful if you want to determine
what PCI boards are installed in your xPC Target system, or if you have or
want to use multiple boards of a particular type in your system. Before you
start, determine what boards are installed in your xPC Target system. Use
one of the following:

• In the xPC Target Explorer, connect to the target PC in question and
expand the PCI Devices node

• In the MATLAB Command Window, type

getxpcpci('all')

If you have or want to use multiple boards of a particular type in your
system, ensure that the I/O drive supports multiple boards. Refer to one
of the following:

• xPC Target I/O Reference

• xPC Target Interactive Hardware Selection Guide
(http://www.mathworks.com/support/product/XP/productnews
/interactive_guide/xPC_Target_Interactive_Guide.html)

If you confirm that the board type supports multiple boards, and these boards
are installed in the xPC Target system, perform the following procedure to
obtain the bus and slot information for these boards:

1 In the PCI devices display, note the contents of the Bus and Slot columns
of the PCI devices in which you are interested.

2 Enter the bus and slot numbers as vectors into the PCI Slot parameter of
the PCI device. For example

[1 9]

where 1 is the bus number and 9 is the slot number.

14-25

http://www.mathworks.com/support/product/XP/productnews/interactive_guide/xPC_Target_Interactive_Guide.html
http://www.mathworks.com/support/product/XP/productnews/interactive_guide/xPC_Target_Interactive_Guide.html

14 Troubleshooting

For additional information about PCI bus I/O devices, refer to the “PCI Bus
I/O Devices” section of xPC Target I/O Reference.

What Sample Time Can I Expect from the xPC Target
Software?
The xPC Target kernel is tuned for minimal overhead and maximum
performance. On the target PC, the kernel dedicates all of its resources to
the target application. For some representative sample time numbers, run
xpcbench at the MATLAB command line.

Actual obtainable sample times depend on a number of factors, including:

• Processor performance

• Model complexity

• I/O block types

• Number of I/O channels

Why Is My Requested xPC Target Sample Time
Different from the Measured Sample Time?
You might notice that the sample time you request does not equal the actual
sample time you measure from your model. This difference depends on your
hardware. Your model sample time is as close to your requested time as the
hardware allows.

However, hardware does not allow infinite precision in setting the spacing
between the timer interrupts. This limitation can cause the divergent sample
times.

For all PCs, the only timer that can generate interrupts is based on a 1.193
MHz clock. For the xPC Target system, the timer is set to a fixed number of
ticks of this frequency between interrupts. If you request a sample time of
1/10000, or 100, microseconds, you do not get exactly 100 ticks. Instead, the
xPC Target software calculates that number as

100 x 10-6 seconds X 1.193 x 106 ticks/seconds = 119.3 ticks

14-26

General xPC Target™ Troubleshooting

The xPC Target software rounds this number to the nearest whole number,
119 ticks. The actual sample time is then

119 ticks/(1.193 X 106 ticks/second) = 99.75 X 10-6 seconds
(99.75 microseconds)

Compared to the requested original sample time of 100 microseconds, this
value is 0.25% faster.

As an example of how you can use this value to derive the expected deviation
for your hardware, assume the following:

• Output board that generates a 50 Hz sine wave (expected signal)

• Sample time of 1/10000

• Measured signal of 50.145 Hz

The difference between the expected and measured signals is .145, which
deviates from the expected signal value by 0.29% (0.145/50). Compared to the
previously calculated value of 0.25%, there is a difference of 0.04% from the
expected value.

If you want to further refine the measured deviation for your hardware,
assume the following:

• Output board that generates a 50 Hz sine wave (expected signal)

• Sample time of 1/10200

• Measured signal of 50.002 Hz

1/10200 seconds X 1.193 x 106 ticks/seconds = 116.96 ticks

Round this number to the nearest whole number of 117 ticks. The resulting
frequency is then

(116.96 ticks/117)(50) = 49.983 Hz

The difference between the expected and measured signal is 0.019, which
deviates from the expected signal value by 0.038% (0.019/50.002). The
deviation when the sample time is 1/10000 is 0.04%.

14-27

14 Troubleshooting

Some amount of error is common for most PCs, and the margin of error varies
from machine to machine.

Note Most high-level operating systems, like Microsoft Windows or Linux®,
occasionally insert extra long intervals to compensate for errors in the timer.
Be aware that the xPC Target software does not attempt to compensate for
timer errors. This is because for this product, close repeatability is more
important for most models than exact timing. However, some chips might
have inherent designs that produce residual jitters that could affect your
system. For example, some Pentium chips might produce residual jitters on
the order of 0.5 microsecond from interrupt to interrupt.

Why Did I Get Error -10: Invalid File ID on the Target
PC?
You might get this error if you are acquiring signal data with a scope of type
file. This error occurs because the size of the signal data file exceeds the
available space on the disk. The signal data will most likely be corrupted and
irretrievable. You should delete the signal data file and reboot the xPC Target
system. To prevent this occurrence, monitor the size of the signal data file
as the scope acquires data.

Refer to The MathWorks Support xPC Target Web site
(http://www.mathworks.com/support/product/XP) for additional
information.

Can I Write Custom xPC Target Device Drivers?
You might want to write your own driver if you want to include an
unsupported device driver in your xPC Target system. See the xPC Target
Device Drivers Guide for details.

Before you consider writing custom device drivers for the xPC Target system,
you should possess

• Good C programming skills

• Knowledge of writing S-functions and compiling those functions as C-MEX
functions

14-28

http://www.mathworks.com/support/product/XP

General xPC Target™ Troubleshooting

• Knowledge of SimStruct, a MATLAB Simulink C language header file that
defines the Simulink data structure and the SimStruct access macros. It
encapsulates all the data relating to the model or S-function, including
block parameters and outputs.

• An excellent understanding of the I/O hardware. Because of the real-time
nature of the xPC Target system, you must develop drivers with minimal
latency. And since most drivers access the I/O hardware at the lowest
possible level (register programming), you must have a good understanding
of how to control the board with register information. Indirectly, this
means that you must have access to the register-level programming
manual for the device.

• A good knowledge of port and memory I/O access over various buses. You
need this information to access I/O hardware at the register level.

Can I Create a Stand-Alone xPC Target Application to
Interact with a Target Application?
Yes. You can use either the xPC Target API dynamic link library (DLL) or
the xPC Target component object model (COM) API library to create custom
stand-alone applications to control a real-time application running on the
target PC. To deploy these stand-alone applications, you must have the xPC
Target Embedded Option license. Without this license, you can create and
use the stand-alone application in your environment, but cannot deploy that
application on another host PC that does not contain your licensed copy of the
xPC Target software.

See the xPC Target API Guide for details.

Can Signal Outputs from Virtual Blocks Be Tagged?
You cannot directly tag signal outputs from virtual blocks. Instead, do the
following:

1 Add a unity gain block (a Gain block with a gain of 1) to the model.

2 Connect the signal output of the virtual block to the input of the unity
gain block.

3 Tag the output signal of the unity gain block.

14-29

14 Troubleshooting

Why Has the Stop Time Changed?
If you change the step size of a target application after it has been built, it
is possible that the target application will execute for fewer steps than you
expect. The number of execution steps is

floor(stop time/step size)

When you compile code for a model, the Real-Time Workshop software
calculates a number of steps based on the current step size and stop time.
If the stop time is not an integral multiple of the step size, the Real-Time
Workshop software also adjusts the stop time for that model based on the
original stop time and step size. If you later change a step size for a target
application, but do not recompile the code, the xPC Target software uses the
new step size and the adjusted stop time. This might lead to fewer steps
than you expect.

For example, if a model has a stop time of 2.4 and a step size of 1, the
Real-Time Workshop software adjusts the stop time of the model to 2 at
compilation. If you change the step size to .6 but do not recompile the code,
the expected number of steps is 4, but the actual number of steps is 3. This is
because the Real-Time Workshop software still uses the adjusted stop time
of 2.

To avoid this problem, ensure that the original stop time (as specified in the
model) is an integral multiple of the original step size.

Why Do I Get a File System Disabled Error?
If your target PC does not have a FAT hard disk, the monitor on the target PC
displays the following error:

ERROR -4: drive not found
No accessible disk found: file system disabled

If you do not want to access the target PC file system, you can ignore this
message. If you want to access the target PC file system, add a FAT hard disk
to the target PC system and reboot.

Note, ensure that the hard drive is not cable-selected and that the BIOS
can detect it.

14-30

General xPC Target™ Troubleshooting

Can the Target PC Hard Drive Contain Multiple
Partitions?
Yes, the target PC hard drive can contain multiple partitions. However, the
xPC Target software supports file systems of type FAT-12, FAT-16, or FAT-32
only.

Why Does the getparamid Function Return Nothing?
The getparamid and getsignalid functions accept block_name parameters.
For these functions, enter for block_name the mangled name that the
Real-Time Workshop software uses for code generation. You can determine
the block_name as follows:

• If you do not have special characters in your model, use the gcb function.

• If the blocks of interest have special characters, retrieve the mangled name
with tg.showsignals='on' or tg.showparam = 'on'.

For example, if carriage return '\n' is part of the block path, the mangled
name returns with carriage returns replaced by spaces.

How Do I Handle Register Rollover for xPC Target
Encoder Blocks?
Encoder boards have a fixed size counter register of 16 bits, 24 bits, or 32 bits.
Regardless of the size, the register always eventually overflows and rolls over.
This can happen in either the positive or negative direction.

Some boards provide a hardware mechanism to account for overflows or
rollovers. As a best practice, you should design your model to always deal
with overflows or rollovers. An initial count can handle the issue for some
applications.

To handle register rollovers, you can use standard Simulink blocks to design
the following counter algorithm types:

• Rollover Counter — Count the number of rollovers

• Extended Counter — Provide an extended counter that is not limited by
register size

14-31

14 Troubleshooting

The Incremental Encoder sublibrary of the xPC Target library contains
example blocks for these two types of counters. See Rollover Counter and
Extended Counter for further details. You can use these blocks in your model
as is, or modified for your model. Connect the output of the encoder block
to these blocks.

These counters perform the following. To view the algorithms used in these
implementations, right-click the subsystem and select the Look Under
Mask option.

• A rollover counter counts the number of times the output of an encoder
block has rolled over. It counts up for positive direction rollovers and down
for negative direction rollovers.

• An extended counter takes the output of an encoder block and provides a
count that is not limited by register size. For an n-bit register, this counter
should be able to count values greater than 2^(n-1).

Keep the following requirements in mind when using these sample blocks:

• Some driver blocks allow an initial starting value to be loaded into the
register. You must pass this value to the rollover blocks to adjust for
that offset.

• The rollover block needs to know how many counts each rollover represents.
Typically, this number is 2^n, where n is the size of the register in bits.

14-32

Getting Updated xPC Target™ Releases and Help

Getting Updated xPC Target Releases and Help

In this section...

“How to Get Updated xPC Target Releases” on page 14-33
“Are You Working with a New xPC Target Release?” on page 14-33
“Refer to the MathWorks Support Web Site” on page 14-34
“Refer to the Documentation” on page 14-34

How to Get Updated xPC Target Releases

1 Start Simulink > xPC Target > Product News (Web).

2 Look for the section on downloading software and select the version you
want.

Are You Working with a New xPC Target Release?
If you are workingwith a new xPCTarget release, either one you download from
the MathWorks Web site (http://www.mathworks.com/web_downloads/) or
one you install from a DVD, you must do the following:

1 In the MATLAB Command Window, type xpcexplr.

2 Recreate your xPC Target environment (see “Serial Communication” or
Network Communication in the xPC Target Getting Started Guide).

3 Create a new boot disk or image.

4 Reboot the target PC.

5 Rebuild target applications for that new xPC Target release.

14-33

http://www.mathworks.com/web_downloads/

14 Troubleshooting

Refer to the MathWorks Support Web Site
This chapter contains general xPC Target troubleshooting tips. For other
xPC Target solutions and general guidelines, see the following MathWorks
Web site resources:

• MATLAB Central File Exchange for Real Time Targets.

• MathWorks Support xPC Target Web site
(http://www.mathworks.com/support/product/XP). The xPC Target
documentation is also available from this site.

Refer to the Documentation
The xPC Target documentation has hints and tips embedded throughout. You
should install the Help and PDF documentation to provide easy reference.

• The xPC Target Help documentation is available for installation when you
install the xPC Target product either from the DVD or Web download.

• The PDF documentation is available for installation from
http://www.mathworks.com.

14-34

http://www.mathworks.com/matlabcentral/fileexchange/loadCategory.do?objectType=category&objectId;=147
http://www.mathworks.com/support/product/XP
http://www.mathworks.com

15

Target PC Command-Line
Interface Reference

15 Target PC Command-Line Interface Reference

Target PC Commands

In this section...

“Introduction” on page 15-2
“Target Object Methods” on page 15-2
“Target Object Property Commands” on page 15-3
“Scope Object Methods” on page 15-5
“Scope Object Property Commands” on page 15-6
“Aliasing with Variable Commands” on page 15-8

Introduction
You have a limited set of commands that you can use to work the target
application after it has been loaded to the target PC, and to interface with the
scopes for that application.

The target PC command-line interface enables you to work with target
and scope objects in a limited capacity. Methods let you interact directly
with the scope or target. Property commands let you work with target and
scope properties. Variable commands let you alias target PC command-line
interface commands to names of your choice.

Refer to Chapter 8, “Using the Target PC Command-Line Interface” for a
description of how to use these methods and commands.

Target Object Methods
When you are using the target PC command-line interface, target object
methods are limited to starting and stopping the target application.

The following table lists the syntax for the target commands that you can
use on the target PC. The equivalent MATLAB syntax is shown in the right
column, and the target object name tg is used as an example for the MATLAB
methods. These methods assume that you have already loaded the target
application onto the target PC.

15-2

Target PC Commands

Target PC
Command Description and Syntax MATLAB Equivalent

start Start the target application
currently loaded on the target
PC.

Syntax: start

tg.start or +tg

stop Stop the target application
currently running on the target
PC.

Syntax: stop

tg.stop or -tg

reboot Reboot the target PC.

Syntax: reboot

tg.reboot

Target Object Property Commands
When you are using the target PC command-line interface, target object
properties are limited to parameters, signals, stop time, and sample time.
Note the difference between a parameter index (0, 1, . . .) and a parameter
name (P0, P1, . . .).

The following table lists the syntax for the target commands that you can
use to manipulate target object properties. The MATLAB equivalent syntax
is shown in the right column, and the target object name tg is used as an
example for the MATLAB methods.

Target PC
Command Description and Syntax MATLAB Equivalent

getpar Display the value of a
block parameter using the
parameter index.

Syntax: getpar
parameter_index

get(tg, 'parameter_name')

15-3

15 Target PC Command-Line Interface Reference

Target PC
Command Description and Syntax MATLAB Equivalent

setpar Change the value of a
block parameter using the
parameter index.

Syntax: setpar
parameter_index =
floating_point_number

set(tg, 'parameter_name',
number)

stoptime Enter a new stop time.
Use inf to run the target
application until you
manually stop it or reset the
target PC.

Syntax: stoptime =
floating_point_number

tg.stoptime = number

sampletime Enter a new sample time.

Syntax: sampletime =
floating_point_number

tg.sampletime = number

set(tg, 'SampleTime',
number)

P# Display or change the value
of a block parameter. For
example, P2 or P2=1.23e-4.

Syntax: parameter_name or
parameter_name =
floating_point_number

parameter_name is P0, P1,
. . .

tg.getparam(parameter_
index)
tg.setparam(parameter_
index,floating_point_
number)

S# Display the value of a
signal. For example, S2.

Syntax: signal_name

signal_name is S0, S1, .
. .

tg.getsignal(signal_index)

15-4

Target PC Commands

Scope Object Methods
When using the target PC command-line interface, you use scope object
methods to start a scope and add signal traces. Notice that the methods
addscope and remscope are target object methods on the host PC, and notice
the difference between a signal index (0, 1, . . .) and a signal name (S0, S1, .
. .).

The following table lists the syntax for the target commands that you can
use on the target PC. The MATLAB equivalent syntax is shown in the right
column. The target object name tg and the scope object name sc are used as
an example for the MATLAB methods.

Target PC
Command Description and Syntax MATLAB Equivalent

addscope addscope scope_index
addscope

tg.addscope(scope_index)
tg.addscope

remscope remscope scope_index
remscope all

tg.remscope(scope_index)
tg.remscope

startscope startscope scope_index sc.start or +sc
stopscope stopscope scope_index sc.stop or -sc
addsignal addsignal scope_index

= signal_index1,
signal_index2, . . .

sc.addsignal(signal_-
index_vector)

remsignal remsignal scope_index
= signal_index1,
signal_index2, . . .

sc.remsignal(signal_-
index_vector)

15-5

15 Target PC Command-Line Interface Reference

Target PC
Command Description and Syntax MATLAB Equivalent

viewmode Zoom in to one scope or
zoom out to all scopes.

Syntax: viewmode
scope_index or left-click
the scope window

viewmode 'all' or
right-click any scope
window

Press the function key for
the scope, and then press V
to toggle viewmode.

tg.viewMode =
scope_index
tg.viewMode = 'all'

ylimit ylimit scope_index
ylimit scope_index =
auto
ylimit scope_index =
num1, num2

sc.YLimit
sc.YLimit='auto'
sc.YLimit([num1 num2])

grid grid scope_index on
grid scope_index off

sc.Grid = on
sc.Grid = off

Scope Object Property Commands
When you use the target PC command-line interface, scope object properties
are limited to those shown in the following table. Notice the difference
between a scope index (0, 1, . . .) and the MATLAB variable name for the
scope object on the host PC. The scope index is indicated in the top left corner
of a scope window (SC0, SC1, . . .).

If a scope is running, you need to stop the scope before you can change a
scope property.

The following table lists the syntax for the target commands that you can
use on the target PC. The equivalent MATLAB syntax is shown in the right

15-6

Target PC Commands

column, and the scope object name sc is used as an example for the MATLAB
methods

Target PC MATLAB Equivalent

numsamples scope_index =
number

sc.NumSamples = number

decimation scope_index= number sc.Decimation = number

scopemode scope_index = 0 or
numerical, 1 or redraw, 2 or
sliding, 3 or rolling

sc.Mode = 'numerical',
'redraw', 'sliding', 'rolling'

triggermode scope_index =
0, freerun, 1, software, 2,
signal, 3, scope

sc.TriggerMode = 'freerun',
'software', 'signal', 'scope'

numprepostsamples scope_index
= number

sc.NumPrePostSamples = number

triggersignal scope_index =
signal_index

sc.TriggerSignal =
signal_index

triggersample scope_index =
number

sc.TriggerSample = number

triggerlevel scope_index =
number

sc.TriggerLevel = number

triggerslope scope_index = 0,
either, 1, rising, 2, falling

sc.TriggerSlope = 'Either',
'Rising', 'Falling'

triggerscope scope_index2 =
scope_index1

sc.TriggerScope = scope_index1

triggerscopesample
scope_index= integer

sc.TriggerScopeSample =
integer

Press the function key for the scope,
and then press S.

sc.trigger

15-7

15 Target PC Command-Line Interface Reference

Aliasing with Variable Commands
The following table lists the syntax for the aliasing variable commands that
you can use on the target PC. The MATLAB equivalent syntax is shown in
the right column.

Target PC
Command Description and Syntax

MATLAB
Equivalent

setvar Set a variable to a value. Later you can use
that variable to do a macro expansion.

Syntax: setvar variable_name =
target_pc_command

For example, you can type setvar
aa=startscope 2, setvar bb=stopscope
2.

None

getvar Display the value of a variable.

Syntax: getvar variable_name

None

delvar Delete a variable.

Syntax: delvar variable_name

None

delallvar Delete all variables.

Syntax: delallvar

None

showvar Display a list of variables.

Syntax: showvar

None

15-8

16

Function Reference

Software Environment (p. 16-2) Define software and hardware
environment of host and target PCs

GUI (p. 16-3) Open xPC Target ancillary GUIs
Test (p. 16-4) Run tests from MATLAB Command

Window
Target Application Objects (p. 16-5) Control target application on target

PC from host PC
Scope Objects (p. 16-7) Control scopes on target PC
File and File System Objects (p. 16-8) Control file and file system objects in

target PC file system
xPC Target Environment Collection
Object (p. 16-10)

Use xpctarget.targets object to
manage target PC environment
collection objects

xPC Target Utilities (p. 16-11) xPC Target utility functions

16 Function Reference

Software Environment
getxpcenv List environment properties

assigned to MATLAB variable
setxpcenv Change xPC Target environment

properties
updatexpcenv Change current environment

properties to new properties
xpcbootdisk Create xPC Target boot disk or DOS

Loader files and confirm current
environment properties

xpcbytes2file Generate file suitable for use by
From File block

xpcwwwenable Disconnect target PC from current
client application

16-2

GUI

GUI
xpcexplr Open xPC Target Explorer
xpctargetspy Open Real-Time xPC Target Spy

window on host PC

16-3

16 Function Reference

Test
getxpcpci Determine which PCI boards are

installed in target PC
xpctargetping Test communication between host

and target PCs
xpctest Test xPC Target installation

16-4

Target Application Objects

Target Application Objects
addscope Create scopes
close Close serial port connecting host PC

with target PC
delete Remove target object
get (target application
object)

Return target application object
property values

getlog All or part of output logs from target
object

getparam Value of target object parameter
index

getparamid Parameter index from parameter list
getparamname Block path and parameter name

from index list
getscope Scope object pointing to scope defined

in kernel
getsignal Value of target object signal index
getsignalid Signal index or signal property from

signal list
getsignalidsfromlabel Return vector of signal indices
getsignallabel Return signal label
getsignalname Signal name from index list
load Download target application to

target PC
loadparamset Restore parameter values saved in

specified file
reboot Reboot target PC
remscope Remove scope from target PC
saveparamset Save current target application

parameter values

16-5

16 Function Reference

set (target application
object)

Change target application object
property values

setparam Change writable target object
parameters

start (target application
object)

Start execution of target application
on target PC

stop (target application
object)

Stop execution of target application
on target PC

targetping Test communication between host
and target computers

unload Remove current target application
from target PC

xpc Call target object constructor,
xpctarget.xpc

xpctarget.xpc Create target object representing
target application

16-6

Scope Objects

Scope Objects
addsignal Add signals to scope represented by

scope object
get (scope object) Return property values for scope

objects
remsignal Remove signals from scope

represented by scope object
set (scope object) Change property values for scope

objects
start (scope object) Start execution of scope on target PC
stop (scope object) Stop execution of scope on target PC
trigger Software-trigger start of data

acquisition for scope(s)

16-7

16 Function Reference

File and File System Objects

Directories (p. 16-8) Manage file system and FTP objects
FTP (p. 16-8) Manage FTP objects
File System (p. 16-8) Manage file system objects

Directories

cd Change directory on target PC
dir List contents of current directory on

target PC
get (ftp) Retrieve copy of requested file from

target PC
mkdir Make directory on target PC
pwd Current directory path of target PC
rmdir Remove directory from target PC
xpctarget.fs Create xPC Target file system object

FTP

put Copy file from host PC to target PC
xpctarget.ftp Create xPC Target FTP object

File System

diskinfo Information about target PC drive
fclose Close open target PC file(s)
fileinfo Target PC file information
filetable Information about open files in

target PC file system

16-8

File and File System Objects

fopen Open target PC file for reading
fread Read open target PC file
fwrite Write binary data to open target PC

file
getfilesize Size of file on target PC
removefile Remove file from target PC
selectdrive Select target PC drive

16-9

16 Function Reference

xPC Target Environment Collection Object
Add (env collection object) Add new xPC Target environment

collection object
get (env collection object) Return target object collection

environment property values
get (env object) Return target environment property

values
getTargetNames (env collection
object)

Retrieve xPC Target environment
object names

Item (env collection object) Retrieve specific xPC Target
environment (env) object

makeDefault (env collection
object)

Set specific target PC environment
object as default

Remove (env collection object) Remove specific xPC Target
environment object

set (env collection object) Change target object environment
collection object property values

set (env object) Change target environment object
property values

xpctarget.targets Create container object to manage
target PC environment collection
objects

16-10

xPC Target™ Utilities

xPC Target Utilities
macaddr Convert string-based MAC address

to vector-based one
readxpcfile Interpret raw data from xPC Target

file format

16-11

16 Function Reference

16-12

17

Functions

Add (env collection object)

Purpose Add new xPC Target environment collection object

Syntax MATLAB command line

env_collection_object.Add

Description Method of xpctarget.targets objects. Add creates an xPC Target
environment collection object on the host PC.

Examples Add a new xPC Target environment collection object to the system.
Assume that tgs represents the environment collection object.

tgs=xpctarget.targets;

get(tgs)

CCompiler: 'VisualC'

CompilerPath: 'd:\applications\Microsoft Visual Studio'

DefaultTarget: [1x1 xpctarget.env]

NumTargets: 1

tgs.Add

ans =

xpctarget.env

get(tgs)

CCompiler: 'VisualC'

CompilerPath: 'c:\Microsoft Visual Studio'

DefaultTarget: [1x1 xpctarget.env]

NumTargets: 2

See Also xPC Target methods for the xPC Target environment object method
xpctarget.targets, set (env collection object), get (env
collection object)

17-2

addscope

Purpose Create scopes

Syntax MATLAB command line

Create a scope and scope object without assigning to a MATLAB
variable.

addscope(target_object, scope_type, scope_number)
target_object.addscope(scope_type, scope_number)

Create a scope, scope object, and assign to a MATLAB variable

scope_object = addscope(target_object, scope_type, scope_number)

scope_object = target_object.addscope(scope_type, scope_number)

Target PC command line — When you are using this command on
the target PC, you can only add a scope of type target.

addscope
addscope scope_number

Arguments target_object Name of a target object. The default target name
is tg.

scope_type Values are 'host', 'target', or 'file'. This
argument is optional with host as the default value.

scope_number Vector of new scope indices. This argument is
optional. The next available integer in the target
object property Scopes as the default value.

If you enter a scope index for an existing scope object,
the result is an error.

Description addscope creates a scope of the specified type and updates the target
object property Scopes. This method returns a scope object vector. If
the result is not assigned to a variable, the scope object properties are
listed in the MATLAB window. The xPC Target product supports 10

17-3

addscope

scopes of scopes of type target and host, and eight scopes of type file, for
a maximum of 28 scopes. If you try to add a scope with the same index
as an existing scope, the result is an error.

A scope acquires data from the target application and displays that data
on the target PC, uploads the data to the host PC, or stores that data in
a file in the target PC file system.

All scopes of type target, host, or file run on the target PC.

Scope of type target—Data collected is displayed on the target screen
and acquisition of the next data package is initiated by the kernel.

Scope of type host— Collects data and waits for a command from the
host PC for uploading the data. The data is then displayed using a
scope viewer on the host or other MATLAB functions.

Scope of type file — Data collected is stored in a file in the target
PC file system. You can then transfer the data to another PC for
examination or plotting.

Examples Create a scope and scope object sc1 using the method addscope. A
target scope is created on the target PC with an index of 1, and a scope
object is created on the host PC, assigned to the variable sc1. The
target object property Scopes is changed from No scopes defined to 1.

sc1 = addscope(tg,'target',1)

17-4

addscope

or

sc1 = tg.addscope('target',1)

Create a scope with the method addscope and then create a scope
object, corresponding to this scope, using the method getscope. A
target scope is created on the target PC with an index of 1, and a scope
object is created on the host PC, but it is not assigned to a variable. The
target object property Scopes is changed from No scopes defined to 1.

addscope(tg,'target',1) or tg.addscope('target',1)
sc1 = getscope(tg,1) or sc1 = tg.getscope(1)

Create two scopes using a vector of scope objects scvector. Two target
scopes are created on the target PC with scope indices of 1 and 2, and
two scope objects are created on the host PC that represent the scopes
on the target PC. The target object property Scopes is changed from
No scopes defined to 1,2.

scvector = addscope(tg, 'target', [1, 2])

Create a scope and scope object sc4 of type file using the method
addscope. A file scope is created on the target PC with an index of 4. A
scope object is created on the host PC and is assigned to the variable
sc4. The target object property Scopes is changed from No scopes
defined to 4.

sc4 = addscope(tg,'file',4) or sc4 = tg.addscope('file',4)

See Also xPC Target target object methods remscope and getscope.

xPC Target M-file demo scripts listed in “xPC Target Demos” on page
6-9.

17-5

addsignal

Purpose Add signals to scope represented by scope object

Syntax MATLAB command line

addsignal(scope_object_vector, signal_index_vector)
scope_object_vector.addsignal(signal_index_vector)

Target command line

addsignal scope_index = signal_index, signal_index, . . .

Arguments scope_object_vector Name of a single scope object or the name
of a vector of scope objects.

signal_index_vector For one signal, use a single number. For
two or more signals, enclose numbers in
brackets and separate with commas.

scope_index Single scope index.

Description addsignal adds signals to a scope object. The signals must be specified
by their indices, which you can retrieve using the target object method
getsignalid. If the scope_object_vector has two or more scope
objects, the same signals are assigned to each scope.

Note You must stop the scope before you can add a signal to it.

Examples Add signals 0 and 1 from the target object tg to the scope object sc1.
The signals are added to the scope, and the scope object property
Signals is updated to include the added signals.

sc1 = getscope(tg,1)
addsignal(sc1,[0,1]) or sc1.addsignal([0,1])

17-6

addsignal

Display a list of properties and values for the scope object sc1 with the
property Signals, as shown below.

sc1.Signals
Signals = 1 : Signal Generator

0 : Integrator1

Another way to add signals without using the method addsignal is to
use the scope object method set.

set(sc1,'Signals', [0,1]) or sc1.set('signals',[0,1]

Or, to directly assign signal values to the scope object property Signals,

sc1.signals = [0,1]

See Also The xPC Target scope object methods remsignal and set (scope
object).

The target object methods addscope and getsignalid

17-7

cd

Purpose Change directory on target PC

Syntax MATLAB command line

cd(file_obj,target_PC_dir)
file_obj.cd(target_PC_dir)

Arguments file_obj Name of the xpctarget.ftp or xpctarget.fs
object.

target_PC_dir Name of the target PC directory to change to.

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs
objects. From the host PC, changes directory on the target PC.

Examples Change directory from the current to one named logs for the file system
object fsys.

cd(fsys,logs) or fsys.cd(logs)

Change directory from the current to one named logs for the FTP
object f.

cd(f,logs) or f.cd(logs)

See Also xPC Target file object methods mkdir and pwd.

MATLAB cd function.

17-8

close

Purpose Close serial port connecting host PC with target PC

Syntax MATLAB command line

close(target_object)
target_object.close

Arguments target_object Name of a target object.

Description close closes the serial connection between the host PC and a target PC.
If you want to use the serial port for another function without quitting
the MATLAB window – for example, a modem – use this function to
close the connection.

17-9

delete

Purpose Remove target object

Syntax MATLAB command line

delete(target_object)
target_object.delete

Arguments target_object Name of a target object.

Description Use this method to completely remove the target object. If there are any
scopes still associated with the target, this method removes all those
scope objects as well.

To ensure that you have successfully removed a target object, type

target_object

If a message like the following is displayed, you have successfully
removed the target object.

target_object =
handle

See Also The xPC Target target object methods targetping and xpctarget.xpc.

17-10

dir

Purpose List contents of current directory on target PC

Syntax MATLAB command line

dir(file_obj)

Arguments file_obj Name of the xpctarget.ftp or xpctarget.fs
object.

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs
objects. From the host PC, lists the contents of the current directory on
the target PC.

To get the results in an M-by-1 structure, use a syntax like
ans=dir(file_obj). This syntax returns a structure like the following:

ans =
1x5 struct array with fields:
name
date
time
bytes
isdir

where

• name— Name of an object in the directory, shown as a cell array. The
name, stored in the first element of the cell array, can have up to
eight characters. The three-character file extension is stored in the
second element of the cell array.

• date — Date of the last save of that object

• time — Time of the last save of that object

• bytes — Size in bytes of that object

17-11

dir

• isdir — Logical value indicating that the object is (1) or is not (0)
a directory

Examples List the contents of the current directory for the file system object
fsys. You can also list the contents of the current directory for the
FTP object f.

dir(fsys) or dir(f)
4/12/1998 20:00 222390 IO SYS
11/2/2003 13:54 6 MSDOS SYS
11/5/1998 20:01 93880 COMMAND COM
11/2/2003 13:54 <DIR> 0 TEMP
11/2/2003 14:00 33 AUTOEXEC BAT
11/2/2003 14:00 512 BOOTSECT DOS
18/2/2003 16:33 4512 SC1SIGNA DAT

18/2/2003 16:17 <DIR> 0 FOUND 000
29/3/2003 19:19 8512 DATA DAT
28/3/2003 16:41 8512 DATADATA DAT
28/3/2003 16:29 4512 SC4INTEG DAT
1/4/2003 9:28 201326592 PAGEFILE SYS

11/2/2003 14:13 <DIR> 0 WINNT
4/5/2001 13:05 214432 NTLDR '

4/5/2001 13:05 34468 NTDETECT COM
11/2/2003 14:15 <DIR> 0 DRIVERS
22/1/2001 11:42 217 BOOT INI'

28/3/2003 16:41 8512 A DAT
29/3/2003 19:19 2512 SC3SIGNA DAT
11/2/2003 14:25 <DIR> 0 INETPUB
11/2/2003 14:28 0 CONFIG SYS
29/3/2003 19:10 2512 SC3INTEG DAT
1/4/2003 18:05 2512 SC1GAIN DAT
11/2/2003 17:26 <DIR> 0 UTILIT~1

You must use the dir(f) syntax to list the contents of the directory.

17-12

dir

See Also xPC Target file object methods mkdir, cd, and pwd.

MATLAB dir function.

17-13

diskinfo

Purpose Information about target PC drive

Syntax MATLAB command line

diskinfo(filesys_obj,target_PC_drive)
filesys_obj.diskinfo(target_PC_drive)

Arguments filesys_obj Name of the xpctarget.fs file system object.
target_PC_drive Name of the target PC drive for which to return

information.

Description Method of xpctarget.fs objects. From the host PC, returns disk
information for the specified target PC drive.

17-14

diskinfo

Examples Return disk information for the target PC C:\ drive for the file system
object fsys.

diskinfo(fsys,'C:\') or fsys.diskinfo('C:\')
ans =

Label: 'SYSTEM '
DriveLetter: 'C'

Reserved: ''
SerialNumber: 1.0294e+009

FirstPhysicalSector: 63
FATType: 32

FATCount: 2
MaxDirEntries: 0

BytesPerSector: 512
SectorsPerCluster: 4

TotalClusters: 2040293
BadClusters: 0

FreeClusters: 1007937
Files: 19968

FileChains: 22480
FreeChains: 1300

LargestFreeChain: 64349

17-15

fclose

Purpose Close open target PC file(s)

Syntax MATLAB command line

fclose(filesys_obj,file_ID)
filesys_obj.fclose(file_ID)

Arguments filesys_obj Name of the xpctarget.fs file system object.
file_ID File identifier of the file to close.

Description Method of xpctarget.fs objects. From the host PC, closes one or more
open files in the target PC file system (except standard input, output,
and error). The file_ID argument is the file identifier associated with
an open file (see fopen and filetable). You cannot have more than
eight files open in the file system.

Examples Close the open file identified by the file identifier h in the file system
object fsys.

fclose(fsys,h) or fsys.fclose(h)

See Also xPC Target file object methods fopen, fread, filetable, and fwrite.

MATLAB fclose function.

17-16

fc422mexcalcbits

Purpose Calculate parameter values for Fastcom 422/2-PCI board

Syntax MATLAB command line

[a b] = fc422mexcalcbits(frequency)
[a b df] = fc422mexcalcbits(frequency)

Arguments frequency Desired baud rate for the board

[a b] = fc422mexcalcbits(frequency) accepts a baud rate (in units
of baud/second) and converts this value into two parameters a b. You
must enter these values for the parameter Clock bits of the Fastcom
422/2-PCI driver clock. The desired baud rate (frequency) must range
between 30e3 and 1.5e6, which is a hardware limitation of the clock
circuit.

[a b df] = fc422mexcalcbits(frequency) accepts a baud rate (in
units of baud/second) and converts this value into two parameters a
b. You must enter these values for the parameter Clock bits of the
Fastcom 422/2-PCI driver block. The third value, df, indicates the
actual baud rate that is created by the generated parameters a b. The
clock circuit has limited resolution and is unable to perfectly match an
arbitrary frequency. The desired baud rate (frequency) must range
between 30e3 and 1.5e6, which is a hardware limitation of the clock
circuit.

17-17

fileinfo

Purpose Target PC file information

Syntax MATLAB command line

fileinfo(filesys_obj,file_ID)
filesys_obj.fileinfo(file_ID)

Arguments filesys_obj Name of the xpctarget.fs file system object.
file_ID File identifier of the file for which to get file

information.

Description Method of xpctarget.fs objects. From the host PC, gets the
information for the file associated with file_ID.

Examples Return file information for the file associated with the file identifier
h in the file system object fsys.

fileinfo(fsys,h) or fsys.fileinfo(h)
ans =

FilePos: 0
AllocatedSize: 12288
ClusterChains: 1

VolumeSerialNumber: 1.0450e+009
FullName: 'C:\DATA.DAT'

17-18

filetable

Purpose Information about open files in target PC file system

Syntax MATLAB command line

filetable(filesys_obj)
filesys_obj.filetable

Arguments filesys_obj Name of the xpctarget.fs file system object.

Description Method of xpctarget.fs objects. From the host PC, displays a table of
the open files in the target PC file system. You cannot have more than
eight files open in the file system.

Examples Return a table of the open files in the target PC file system for the file
system object fsys.

filetable(fsys) or fsys.filetable
ans =
Index Handle Flags FilePos Name
--

0 00060000 R__ 8512 C:\DATA.DAT
1 00080001 R__ 0 C:\DATA1.DAT
2 000A0002 R__ 8512 C:\DATA2.DAT
3 000C0003 R__ 8512 C:\DATA3.DAT
4 001E000S R__ 0 C:\DATA4.DAT

The table returns the open file handles in hexadecimal. To convert a
handle to one that other xpctarget.fs methods, such as fclose, can
use, use the hex2dec function.

h1 = hex2dec('001E0001'))
h1 =
1966081

To close that file, use the xpctarget.fs fclose method.

17-19

filetable

fsys.fclose(h1);

See Also xPC Target file object methods fopen and fclose.

17-20

fopen

Purpose Open target PC file for reading

Syntax MATLAB command line

file_ID = fopen(file_obj,'file_name')
file_ID = file_obj.fopen('file_name')
file_ID = fopen(file_obj,'file_name',permission)
file_ID = file_obj.fopen('file_name',permission)

Arguments file_obj Name of the xpctarget.fs object.
'file_name' Name of the target PC to open.
permission Values are 'r', 'w', 'a', 'r+', 'w+', or 'a+'.

This argument is optional with 'r' as the
default value.

Description Method of xpctarget.fs objects. From the host PC, opens the specified
filename on the target PC for binary access.

The permission argument values are

• 'r'

Open the file for reading (default). The method does nothing if the
file does not already exist.

• 'w'

Open the file for writing. The method creates the file if it does not
already exist.

• 'a'

Open the file for appending to the file. Initially, the file pointer is at
the end of the file. The method creates the file if it does not already
exist.

• 'r+'

17-21

fopen

Open the file for reading and writing. Initially, the file pointer is at
the beginning of the file. The method does nothing if the file does
not already exist.

• 'w+'

Open the file for reading and writing. The method empties the file
first, if the file already exists and has content, and places the file
pointer at the beginning of the file. The method creates the file if
it does not already exist.

• 'a+'

Open the file for reading and appending to the file. Initially, the file
pointer is at the beginning of the file. The method creates the file if
it does not already exist.

You cannot have more than eight files open in the file system. This
method returns the file identifier for the open file in file_ID. You use
file_ID as the first argument to the other file I/O methods (such as
fclose, fread, and fwrite).

Examples Open the file data.dat in the target PC file system object fsys. Assign
the resulting file handle to a variable for reading.

h = fopen(fsys,'data.dat') or fsys.fopen('data.dat')
ans =

2883584
d = fread(h);

See Also xPC Target file object methods fclose, fread, and fwrite.

MATLAB fopen function.

17-22

fread

Purpose Read open target PC file

Syntax MATLAB command line

fread(file_obj,file_ID)
file_obj.fread(file_ID)

Arguments file_obj Name of the xpctarget.fs object.
file_ID File identifier of the file to read.

Description Method of xpctarget.fs objects. From the host PC, reads the binary
data from the file on the target PC and writes it into matrix A. The
file_ID argument is the file identifier associated with an open file (see
fopen).

Examples Open the file data.dat in the target PC file system object fsys. Assign
the resulting file handle to a variable for reading.

h = fopen(fsys,'data.dat') or fsys.fopen('data.dat')
ans =

2883584
d = fread(h);

This reads the file data.dat and stores the contents of the file to d. This
content is in the xPC Target file format.

See Also xPC Target file object methods fclose, fopen, and fwrite.

MATLAB fread function.

17-23

fwrite

Purpose Write binary data to open target PC file

Syntax MATLAB command line

fwrite(file_obj,file_ID,A)
file_obj.fwrite(file_ID,A)

Arguments file_obj Name of the xpctarget.fs object.
file_ID File identifier of the file to write.
A Elements of matrix A to be written to the specified file.

Description Method of xpctarget.fs objects. From the host PC, writes the elements
of matrix A to the file identified by file_ID. The data is written to
the file in column order. The file_ID argument is the file identifier
associated with an open file (see fopen). fwrite requires that the file be
open with write permission.

Examples Open the file data.dat in the target PC file system object fsys. Assign
the resulting file handle to a variable for writing.

h = fopen(fsys,'data.dat','w')

or

fsys.fopen('data.dat','w')

ans =
2883584

d = fwrite(fsys,h,magic(5));

This writes the elements of matrix A to the file handle h. This content is
written in column order.

17-24

fwrite

See Also xPC Target file object methods fclose, fopen, and fread.

MATLAB fwrite function.

17-25

get (env collection object)

Purpose Return target object collection environment property values

Syntax MATLAB command line

get(env_collection_object, 'env_collection_object_property')

Arguments env_collection_object Name of a collection of target
objects.

'env_collection_object_
property'

Name of a target object
environment property.

Description get gets the values of environment properties for a collection of target
objects.

The environment properties for a target environment object collection
are listed in the following table. This table includes a description of the
properties and which properties you can change directly by assigning
a value.

Property Description Writable

CCompiler Values are 'Watcom' and 'VisualC'.
From the xPC Target Explorer
window compiler list, select either
Watcom or VisualC.

Yes

17-26

get (env collection object)

Property Description Writable

CompilerPath Value is a valid compiler root
directory. Enter the path where
you installed a Watcom C/C++
or Microsoft Visual Studio C/C++
compiler.

If the path is invalid or the directory
does not contain the compiler, an
error message appears when you use
the function updatexpcenv or build a
target application.

Yes

DefaultTarget Contains an instance of the
default target environment object
(xpctarget.env).

No

FloppyDrive Allows you to set the 3.5-inch drive
letter to the one designated by your
target PC. By default, FloppyDrive
is set to a:. Set this property to b:
only if the target PC designates it.
As necessary, set this value before
creating a boot disk. Valid values are
'a:' and 'b:'.

Yes

NumTargets Contains the number of target objects
in the xPC Target system. Note that
this is not the actual number of target
PCs in the system.

No

Examples List the values of all the target object collection environment property
values. Assume that tgs represents the target object collection
environment.

tgs=xpctarget.targets;

get(tgs)

CCompiler: 'VisualC'

17-27

get (env collection object)

CompilerPath: 'd:\applications\Microsoft Visual Studio'

DefaultTarget: [1x1 xpctarget.env]

NumTargets: 3

List the value for the target object environment collection property
CCompiler. Note that the property name is a string, in quotation
marks, and not case sensitive.

get(tgs,'ccompiler') or tgs.get('CCompiler')
get(tgs,'CCompiler')
ans = VisualC

See Also xPC Target target object environment method set (env collection
object)

Built-in MATLAB functions get and set

17-28

get (env object)

Purpose Return target environment property values

Syntax MATLAB command line

get(env_object)

get(env_object, 'property_name1', 'property_value1',

'property_name2', 'property_value2', . . .)

env_object.get('property_name1', 'property_value1')

get(env_object, property_name_vector, property_value_vector)

env_object.property_name = property_value

Arguments env_object Name of a target environment object.
'property_name' Name of a target environment object property.

Always use quotation marks.
property_value Value for a target environment object property.

Always use quotation marks for character
strings; quotation marks are optional for
numbers.

parameter_name The letter p followed by the parameter index.
For example, p0, p1, p2.

Description get retrieves the properties of the target environment object. Not all
properties are user writable.

The environment properties for a target environment object are listed
in the following table. This table includes a description of the properties
and which properties you can change directly by assigning a value:

17-29

get (env object)

Environment Property Description Writable

Name Target PC name. Yes
HostTargetComm Values are 'RS232' and 'TcpIp'.

From the xPC Target Explorer windowHost
target communication list, select either
RS232 or TCP/IP.

If you select RS232, you also need to set
the property RS232HostPort. If you select
TCP/IP, then you also need to set all
properties that start with TcpIp.

Yes

TargetRAMSizeMB Values are 'Auto' and 'Manual'.

From the xPC Target Explorer window
Target RAM size list, select either Auto
or Manual. If you select Manual, enter the
amount of RAM, in megabytes, installed
on the target PC. This property is set by
default to Auto.

Target RAM size defines the total amount
of installed RAM in the target PC. This RAM
is used for the kernel, target application,
data logging, and other functions that use
the heap.

If Target RAM size is set to Auto, the
target application automatically determines
the amount of memory up to 64 MB. If the
target PC does not contain more than 64
MB of RAM, or you do not want to use more
than 64 MB, select Auto. If the target PC
has more than 64 MB of RAM, and you want
to use more than 64 MB, select Manual, and
enter the amount of RAM installed in the
target PC.

Yes

17-30

get (env object)

Environment Property Description Writable

MaxModelSize BootFloppy and DOSLoader modes ignore
this value.

Values are '1MB', '4MB', and '16MB'.

From the xPC Target Explorer window
Maximum model size list, select either 1
MB, 4 MB, or 16 MB. This value is unavailable
for BootFloppy or DOSLoader modes.

Choosing the maximum model size reserves
the specified amount of memory on the
target PC for the target application. The
remaining memory is used by the kernel
and by the heap for data logging.

Selecting too high a value leaves less
memory for data logging. Selecting too low a
value does not reserve enough memory for
the target application and creates an error.

Note that you cannot build a 16 MB target
application to run in StandAlone mode.

Yes

TargetScope Values are 'Disabled' and 'Enabled'.

From the xPC Target Explorer window
Enable target scope list, select either
Enabled or Disabled.

The property TargetScope is set by default
to Enabled. If you set TargetScope
to Disabled, the target PC displays
information as text.

To use all the features of the target scope,
you also need to install a keyboard on the
target PC.

Yes

17-31

get (env object)

Environment Property Description Writable

TargetBoot Values are 'BootFloppy', 'CDBoot',
'DOSLoader', 'NetworkBoot', and
'StandAlone'.

From the xPC Target Explorer window
target PC configuration pane, select one
of the following tabs: Boot Floppy, CD
Boot, DOS Loader, Network Boot, or
Standalone.

If your license file does not include the
license for the xPC Target Embedded Option
product, your only options are BootFloppy,
CDBoot, DOSLoader, and NetworkBoot.
With the xPC Target Embedded Option
product licensed and installed, you have the
additional choice of Standalone.

Yes

BootFloppyLocation Drive name for creation of 3.5-inch target
boot disk.

Yes

DOSLoaderLocation Location of DOSLoader files to boot target
PCs from devices other than 3.5–inch disk
or CD.

Yes

CDBootImageLocation Location of cdboot.iso file for creation of
CD target boot disk.

Yes

EmbeddedOption Values are 'Disabled' and 'Enabled'.
This property is read only.

Note that the xPC Target Embedded Option
product is enabled only if you purchase an
additional license.

Yes

17-32

get (env object)

Environment Property Description Writable

SecondaryIDE Values are 'off' and 'on'. Set this value
to 'on' only if you want to use the disks
connected to a secondary IDE controller.
If you do not have disks connected to the
secondary IDE controller, leave this value
set to 'off'.

Yes

RS232HostPort Values are 'COM1' and 'COM2'.

From the xPC Target Explorer windowHost
port list, select either COM1 or COM2 for the
connection on the host computer. The xPC
Target software automatically determines
the COM port on the target PC.

Before you can select an RS-232 port, you
need to set the HostTargetComm property
to RS232.

Yes

RS232Baudrate Values are '115200', '57600', '38400',
'19200', '9600', '4800’, '2400', and
'1200'.

From the Baud rate list, select 115200,
57600, 38400, 19200, 9600, 4800, 2400, or
1200.

Yes

TcpIpTargetAddress Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window Target
PC IP address box, enter a valid IP
address for your target PC. Ask your system
administrator for this value.

For example, 192.168.0.10.

Yes

17-33

get (env object)

Environment Property Description Writable

TcpIpTargetPort Value is 'xxxxx'.

In the xPC Target Explorer window TcpIp
target port box, enter a value greater than
20000.

This property is set by default to 22222 and
should not cause any problems. The number
is higher than the reserved area (telnet,
ftp, ...) and it is only of use on the target PC.

Yes

TcpIpSubNetMask Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window LAN
subnet mask address text box, enter the
subnet mask of your LAN. Ask your system
administrator for this value.

For example, your subnet mask could be
255.255.255.0.

Yes

TcpIpGateway Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window TcpIp
gateway address box, enter the IP address
for your gateway. This property is set by
default to 255.255.255.255, which means
that a gateway is not used to connect to the
target PC.

If you communicate with your target PC
from within a LAN that uses gateways,
and your host and target computers are
connected through a gateway, then you need
to enter a value for this property. If your
LAN does not use gateways, you do not need
to change this property. Ask your system
administrator.

Yes

17-34

get (env object)

Environment Property Description Writable

TcpIpTargetDriver Values are 'NE2000', 'SMC91C9X',
'I82559', 'RTLANCE', 'R8139', '3C90x',
and 'NS83815'.

From the xPC Target Explorer window
TcpIp target driver list, select NE2000,
SMC91C9X, I82559, RTLANCE, R8139, 3C90x,
or NS83815. The Ethernet card provided
with your system uses the NE2000 driver.

Yes

TcpIpTargetBusType Values are 'PCI' and 'ISA'.

From the xPC Target Explorer window
TcpIp target bus type list, select either
PCI or ISA. This property is set by default
to PCI, and determines the bus type of your
target PC. You do not need to define a bus
type for your host PC, which can be the
same or different from the bus type in your
target PC.

If TcpIpTargetBusType is set to PCI,
then the properties TcpIpISAMemPort and
TcpIpISAIRQ have no effect on TCP/IP
communication.

If you are using an ISA bus card,
set TcpIpTargetBusType to ISA and
enter values for TcpIpISAMemPort and
TcpIpISAIRQ.

Yes

17-35

get (env object)

Environment Property Description Writable

TcpIpTargetISAIRQ Value is 'n', where n is between 4 and 15.

If you are using an ISA bus Ethernet card,
you must enter values for the properties
TcpIpISAMemPort and TcpIpISAIRQ. The
values of these properties must correspond
to the jumper settings or ROM settings on
the ISA-bus Ethernet card.

On your ISA bus card, assign an IRQ
and I/O-port base address by moving the
jumpers on the card.

The MathWorks recommends setting the
IRQ to 5, 10, or 11. If one of these hardware
settings leads to a conflict in your target
PC, choose another IRQ and make the
corresponding changes to your jumper
settings.

Yes

17-36

get (env object)

Environment Property Description Writable

TcpIpTargetISAMem Port Value is '0xnnnn'.

If you are using an ISA bus Ethernet card,
you must enter values for the properties
TcpIpISAMemPort and TcpIpISAIRQ. The
values of these properties must correspond
to the jumper settings or ROM settings on
your ISA bus Ethernet card.

On your ISA bus card, assign an IRQ and
I/O port base address by moving the jumpers
on the card.

Set the I/O port base address to around
0x300. If one of these hardware settings
leads to a conflict in your target PC, choose
another I/O port base address and make
the corresponding changes to your jumper
settings.

Yes

TargetMACAddress Physical target PC MAC address when
booting within a dedicated network.

Yes

CCompiler Values are 'Watcom' and 'VisualC'. From
the xPC Target Explorer window compiler
list, select either Watcom or VisualC.

Yes

CompilerPath Value is a valid compiler root directory.
Enter the path where you installed a
Watcom C/C++ or Microsoft Visual Studio
C/C++ compiler.

If the path is invalid or the directory
does not contain the compiler, an error
message appears when you use the function
updatexpcenv or build a target application.

Yes

See Also set (env object)

17-37

get (ftp)

Purpose Retrieve copy of requested file from target PC

Syntax MATLAB command line

get(file_obj,file_name)
file_obj.get(file_name)

Arguments file_obj Name of the xpctarget.ftp object.
file_name Name of a file on the target PC.

Description Method of xpctarget.ftp objects. Copies the specified filename from
the target PC to the current directory of the host PC. file_name must
be either a fully qualified filename on the target PC, or located in the
current directory of the target PC.

Examples Retrieve a copy of the file named data.dat from the current directory of
the target PC file object f.

get(f,'data.dat') or f.get('data.dat')
ans = data.dat

See Also xPC Target file object methods put.

17-38

get (scope object)

Purpose Return property values for scope objects

Syntax MATLAB command line

get(scope_object_vector)
get(scope_object_vector, 'scope_object_property')
get(scope_object_vector, scope_object_property_vector)

Arguments target_object Name of a target object.
scope_object_vector Name of a single scope or name of a vector

of scope objects.
scope_object_property Name of a scope object property.

Description get gets the value of readable scope object properties from a scope object
or the same property from each scope object in a vector of scope objects.
Scope object properties let you select signals to acquire, set triggering
modes, and access signal information from the target application. You
can view and change these properties using scope object methods.

The properties for a scope object are listed in the following table. This
table includes descriptions of the properties and the properties you can
change directly by assigning a value.

Property Description Writable

Application Name of the Simulink model associated with
this scope object.

No

17-39

get (scope object)

Property Description Writable

AutoRestart For scopes of type 'File', enable the file
scope to collect data up to the number of
samples (NumSamples), then start over again,
appending the new data to the end of the
signal data file. Clear the AutoRestart check
box to have the scope of type 'File' collect
data up to Number of samples, then stop.

If the named signal data file already exists
when you start the target application, the xPC
Target software overwrites the old data with
the new signal data.

For scopes of type 'Host' or 'Target', this
parameter has no effect.

No

Data Contains the output data for a single data
package from a scope.

For scopes of type 'Target' or 'File', this
parameter has no effect.

Yes

Decimation A number n, where every nth sample is
acquired in a scope window.

Yes

17-40

get (scope object)

Property Description Writable

Filename Provide a name for the file to contain the
signal data. By default, the target PC writes
the signal data to a file named C:\data.dat
for scope blocks. Note that for scopes of
type 'File' created through the MATLAB
interface, there is no name initially assigned
to FileName. After you start the scope, the
xPC Target software assigns a name for the
file to acquire the signal data. This name
typically consists of the scope object name,
ScopeId, and the beginning letters of the first
signal added to the scope.

For scopes of type 'Host' or 'Target', this
parameter has no effect.

No

Grid Values are 'on' and 'off'.

For scopes of type 'Host' or 'File', this
parameter has no effect.

Yes

17-41

get (scope object)

Property Description Writable

Mode For scopes of type 'Target', indicate how
a scope displays the signals. Values are
'Numerical', 'Redraw' (default), 'Sliding',
and 'Rolling'.

For scopes of type File, specify when a
file allocation table (FAT) entry is updated.
Values are 'Lazy' or 'Commit'. Both modes
write the signal data to the file. With
'Commit' mode, each file write operation
simultaneously updates the FAT entry for
the file. This mode is slower, but the file
system always knows the actual file size. With
'Lazy' mode, the FAT entry is updated only
when the file is closed and not during each file
write operation. This mode is faster, but if the
system crashes before the file is closed, the file
system might not know the actual file size (the
file contents, however, will be intact).

For scopes of type Host, this parameter has
no effect.

Yes

NumPrePostSamples For scopes of type 'Host' or 'Target', this
parameter is the number of samples collected
before or after a trigger event. The default
value is 0. Entering a negative value collects
samples before the trigger event. Entering
a positive value collects samples after the
trigger event. If you set TriggerMode to
'FreeRun', this property has no effect on data
acquisition.

Yes

17-42

get (scope object)

Property Description Writable

NumSamples Number of contiguous samples captured
during the acquisition of a data package. If
the scope stops before capturing this number
of samples, the scope has the collected data up
to the end of data collection, then has zeroes
for the remaining uncollected data. Note
that you should know what type of data you
are collecting, it is possible that your data
contains zeroes.

For scopes of type 'File', this parameter
works in conjunction with the AutoRestart
check box. If the AutoRestart box is selected,
the file scope collects data up to Number of
Samples, then starts over again, overwriting
the buffer. If the AutoRestart box is not
selected, the file scope collects data only up to
Number of Samples, then stops.

Yes

ScopeId A numeric index, unique for each scope. No
Signals List of signal indices from the target object to

display on the scope.
No

Status Indicate whether data is being acquired, the
scope is waiting for a trigger, the scope has
been stopped (interrupted), or acquisition is
finished. Values are 'Acquiring', 'Ready
for being Triggered', 'Interrupted', and
'Finished'.

No

Time Contains the time data for a single data
package from a scope.

No

17-43

get (scope object)

Property Description Writable

TriggerLevel If TriggerMode is 'Signal', indicates the
value the signal has to cross to trigger the
scope and start acquiring data. The trigger
level can be crossed with either a rising or
falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values are
'FreeRun' (default), 'Software', 'Signal',
and 'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then
TriggerSample specifies which sample of the
triggering scope the current scope should
trigger on. For example, if TriggerSample is 0
(default), the current scope triggers on sample
0 (first sample acquired) of the triggering
scope. This means that the two scopes will be
perfectly synchronized. If TriggerSample is
1, the first sample (sample 0) of the current
scope will be at the same instant as sample
number 1 (second sample in the acquisition
cycle) of the triggering scope.

As a special case, setting TriggerSample to
-1 means that the current scope is triggered
at the end of the acquisition cycle of the
triggering scope. Thus, the first sample of the
triggering scope is acquired one sample after
the last sample of the triggering scope.

Yes

TriggerScope If TriggerMode is 'Scope', identifies the
scope to use for a trigger. A scope can be set
to trigger when another scope is triggered.
You do this by setting the slave scope property
TriggerScope to the scope index of the master
scope.

Yes

17-44

get (scope object)

Property Description Writable

TriggerSignal If TriggerMode is 'Signal', identifies the
block output signal to use for triggering the
scope. You identify the signal with a signal
index from the target object property Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates whether
the trigger is on a rising or falling signal.
Values are 'Either' (default), 'Rising', and
'Falling'.

Yes

Type Determines whether the scope is displayed on
the host computer or on the target computer.
Values are 'Host', 'Target', and 'File'.

No

WriteSize Enter the block size, in bytes, of the data
chunks. This parameter specifies that a
memory buffer, of length number of samples
(NumSamples), collect data in multiples of
WriteSize. By default, this parameter is 512
bytes, which is the typical disk sector size.
Using a block size that is the same as the disk
sector size provides optimal performance.

If you experience a system crash, you can
expect to lose an amount of data the size of
WriteSize.

For scopes of type 'Host' or 'Target', this
parameter has no effect.

Yes

YLimit Minimum and maximum y-axis values. This
property can be set to 'auto'.

For scopes of type 'Host' or 'File', this
parameter has no effect.

Yes

17-45

get (scope object)

Examples List all the readable properties, along with their current values. This
is given in the form of a structure whose field names are the property
names and whose field values are property values.

get(sc)

List the value for the scope object property Type. Notice that the
property name is a string, in quotation marks, and is not case sensitive.

get(sc,'type')
ans = Target

See Also The xPC Target scope object method set (scope object).

The target object methods set (target application object).

The built-in MATLAB functions get and set.

17-46

get (target application object)

Purpose Return target application object property values

Syntax MATLAB command line

get(target_object, 'target_object_property')

Arguments target_object Name of a target object.
'target_object_property'Name of a target object property.

Description get gets the value of readable target object properties from a target
object.

The properties for a target object are listed in the following table. This
table includes a description of the properties and which properties you
can change directly by assigning a value.

Property Description Writable

Application Name of the Simulink model and target
application built from that model.

No

17-47

get (target application object)

Property Description Writable

AvgTET Average task execution time. This value is
an average of the measured CPU times,
in seconds, to run the model equations
and post outputs during each sample
interval. Task execution time is nearly
constant, with minor deviations due to
cache, memory access, interrupt latency,
and multirate model execution.

The TET includes:

• Complete I/O latency.

• Data logging (the parts that happen in
a real-time task). This includes data
captured in scopes.

• Asynchronous interruptions.

• Parameter updating latency (if the
Double buffer parameter changes
parameter in the xPC Target options
node using the model Simulation >
Configuration Parameters dialog box).

Note that the TET is not the only
consideration in determining the
minimum achievable sample time. Other
considerations, not included in the TET,
are:

• Time required to measure TET

• Interrupt latency required to schedule
and run one step of the model

No

17-48

get (target application object)

Property Description Writable

Connected Communication status between the host
PC and the target PC. Values are 'Yes'
and 'No'.

No

CPUoverload CPU status for overload. If the target
application requires more CPU time than
the sample time of the model, this value
is set from 'none' to 'detected' and
the current run is stopped. Correcting
CPUoverload requires either a faster
processor or a larger sample time.

No

ExecTime Execution time. Time, in seconds, since
your target application started running.
When the target application stops, the
total execution time is displayed.

No

LogMode Controls which data points are logged:

• Time-equidistant logging. Logs a data
point at every time interval. Set value
to 'Normal'.

• Value-equidistant logging. Logs a data
point only when an output signal from
the OutputLog changes by a specified
value (increment). Set the value to the
difference in signal values.

Yes

17-49

get (target application object)

Property Description Writable

MaxLogSamples Maximum number of samples for each
logged signal within the circular buffers
for TimeLog, StateLog, OutputLog, and
TETLog. StateLog and OutputLog can
have one or more signals.

This value is calculated by dividing the
Signal Logging Buffer Size by the
number of logged signals. The Signal
Logging Buffer Size box is located
at Simulation menu Configuration
Parameters > xPC Target options
pane.

No

MaxTET Maximum task execution time.
Corresponds to the slowest time (longest
time measured), in seconds, to update
model equations and post outputs.

No

MinTET Minimum task execution time.
Corresponds to the fastest time (smallest
time measured), in seconds, to update
model equations and post outputs.

No

Mode Type of Real-Time Workshop code
generation. Values are 'Real-Time
Singletasking', 'Real-Time
Multitasking', and 'Accelerate'.
The default value is 'Real-Time
Singletasking'.
Even if you select 'Real-Time
Multitasking', the actual mode
can be 'Real-Time Singletasking'. This
happens if your model contains only one or
two tasks and the sample rates are equal.

No

17-50

get (target application object)

Property Description Writable

NumLogWraps The number of times the circular
buffer wrapped. The buffer wraps each
time the number of samples exceeds
MaxLogSamples.

No

NumParameters The number of parameters from your
Simulink model that you can tune or
change.

No

NumSignals The number of signals from your Simulink
model that are available to be viewed with
a scope.

No

OutputLog Storage in the MATLAB workspace for the
output or y-vector logged during execution
of the target application.

No

Parameters List of tunable parameters. This list is
visible only when ShowParameters is set
to 'on':

• Property value. Value of the parameter
in a Simulink block.

• Type. Data type of the parameter.
Always double.

• Size. Size of the parameter. For
example, scalar, 1-by-2 vector, or 2-by-3
matrix.

• Parameter name. Name of a parameter
in a Simulink block.

• Block name. Name of a Simulink block.

No

17-51

get (target application object)

Property Description Writable

SampleTime Time between samples. This value equals
the step size, in seconds, for updating the
model equations and posting the outputs.
(See “User Interaction” in the xPC Target
Getting Started Guide for limitations on
target property changes to sample times.)

Yes

Scopes List of index numbers, with one index for
each scope.

No

SessionTime Time since the kernel started running on
your target PC. This is also the elapsed
time since you booted the target PC.
Values are in seconds.

No

ShowParameters Flag set to view or hide the list of
parameters from your Simulink blocks.
This list is shown when you display the
properties for a target object. Values are
'on' and 'off'.

Yes

ShowSignals Flag set to view or hide the list of signals
from your Simulink blocks. This list is
shown when you display the properties
for a target object. Values are 'on' and
'off'.

Yes

Signals List of viewable signals. This list is visible
only when ShowSignals is set to 'on'.

• Property name. S0, S1. . .

• Property value. Value of the signal.

• Block name. Name of the Simulink
block the signal is from.

No

17-52

get (target application object)

Property Description Writable

StateLog Storage in the MATLAB workspace for the
state or x-vector logged during execution
of the target application.

No

Status Execution status of your target application.
Values are 'stopped' and 'running'.

No

StopTime Time when the target application stops
running. Values are in seconds. The
original value is set in the Simulation
menuConfiguration Parameters dialog.

When the ExecTime reaches the StopTime,
the application stops running.

Yes

TETLog Storage in the MATLAB workspace for
a vector containing task execution times
during execution of the target application.

To enable logging of the TET, you need
to select the Log Task Execution Time
check box located at Simulation menu
Configuration Parameters > xPC
Target options pane.

No

TimeLog Storage in the MATLAB workspace for the
time or t-vector logged during execution of
the target application.

No

ViewMode Display either all scopes or a single scope
on the target PC. Value is 'all' or a single
scope index. This property is active only if
the environment property TargetScope is
set to enabled.

Yes

Examples List the value for the target object property StopTime. Notice that the
property name is a string, in quotation marks, and not case sensitive.

get(tg,'stoptime') or tg.get('stoptime')

17-53

get (target application object)

ans = 0.2

See Also The xPC Target target object method set (target application
object).

The scope object methods get (scope object) and set (target
application object).

The built-in MATLAB functions get and set.

17-54

getfilesize

Purpose Size of file on target PC

Syntax MATLAB command line

getfilesize(file_obj,file_ID)
file_obj.getfilesize(file_ID)

Arguments file_obj Name of the xpctarget.fs object.
file_ID File identifier of the file to get the size of.

Description Method of xpctarget.fs objects. From the host PC, gets the size (in
bytes) of the file identified by the file_ID file identifier on the target
PC file system. Use the xPC Target file object method fopen to open
the file system object.

Examples Get the size of the file identifier h for the file system object fsys.

getfilesize(fsys,h) or fsys.getfilesize(h)

See Also xPC Target file object method fopen.

17-55

getlog

Purpose All or part of output logs from target object

Syntax MATLAB command line

log = getlog(target_object, 'log_name', first_point,
number_samples, decimation)

Arguments log User-defined MATLAB variable.
'log_name' Values are TimeLog, StateLog, OutputLog, or

TETLog. This argument is required.
first_point First data point. The logs begin with 1. This

argument is optional. Default is 1.
number_samples Number of samples after the start time. This

argument is optional. Default is all points in log.
decimation 1 returns all sample points. n returns every nth

sample point. This argument is optional. Default
is 1.

Description Use this function instead of the function get when you want only part
of the data.

Examples To get the first 1000 points in a log,

Out_log = getlog(tg, 'TETLog', 1, 1000)

To get every other point in the output log and plot values,

Output_log = getlog(tg, 'TETLog', 1, ,2)
Time_log = getlog(tg, 'TimeLog', 1, ,2)
plot(Time_log, Output_log)

See Also xPC Target target object method get (target application object).

The procedure “Entering the Real-Time Workshop Parameters”.

17-56

getparam

Purpose Value of target object parameter index

Syntax MATLAB command line

getparam(target_object, parameter_index)

Arguments target_object Name of a target object. The default
name is tg.

parameter_index Index number of the parameter.

Description getparam returns the value of the parameter associated with
parameter_index.

Examples Get the value of parameter index 5.

getparam(tg, 5)
ans = 400

17-57

getparamid

Purpose Parameter index from parameter list

Syntax MATLAB command line

getparamid(target_object, 'block_name', 'parameter_name')

Arguments target_object Name of a target object. The default name
is tg.

'block_name' Simulink block path without model name.
'parameter_name' Name of a parameter within a Simulink

block.

Description getparamid returns the index of a parameter in the parameter list
based on the path to the parameter name. The names must be entered
in full and are case sensitive. Note, enter for block_name the mangled
name that Real-Time Workshop uses for code generation.

Examples Get the parameter property for the parameter Gain in the Simulink
block Gain1, incrementally increase the gain, and pause to observe
the signal trace.

id = getparamid(tg, 'Subsystem/Gain1', 'Gain')
for i = 1 : 3

set(tg, id, i*2000);
pause(1);

end

Get the property index of a single block.

getparamid(tg, 'Gain1', 'Gain') ans = 5

See Also The xPC Target scope object method getsignalid.

The xPC Target M-file demo scripts listed in “xPC Target Demos” on
page 6-9.

17-58

getparamid

Troubleshooting chapter question “Why Does the getparamid Function
Return Nothing?” on page 14-31.

17-59

getparamname

Purpose Block path and parameter name from index list

Syntax MATLAB command line

getparamname(target_object, parameter_index)

Arguments target_object Name of a target object. The default name
is tg.

parameter_index Index number of the parameter.

Description getparamname returns two argument strings, block path and parameter
name, from the index list for the specified parameter index.

Examples Get the block path and parameter name of parameter index 5.

[blockPath,parName]=getparamname(tg,5)
blockPath =
Signal Generator
parName =
Amplitude

17-60

getscope

Purpose Scope object pointing to scope defined in kernel

Syntax MATLAB command line

scope_object_vector = getscope(target_object, scope_number)
scope_object = target_object.getscope(scope_number)

Arguments target_object Name of a target object.
scope_number_vector Vector of existing scope indices listed in the

target object property Scopes. The vector can
have only one element.

scope_object MATLAB variable for a new scope object
vector. The vector can have only one scope
object.

Description getscope returns a scope object vector. If you try to get a nonexistent
scope, the result is an error. You can retrieve the list of existing
scopes using the method get(target_object, 'scopes') or
target_object.scopes.

Examples If your Simulink model has an xPC Target scope block, a scope of type
target is created at the time the target application is downloaded to

17-61

getscope

the target PC. To change the number of samples, you need to create a
scope object and then change the scope object property NumSamples.

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)
sc1.NumSample = 500

The following example gets the properties of all scopes on the target PC
and creates a vector of scope objects on the host PC. If the target object
has more than one scope, it create a vector of scope objects.

scvector = getscope(tg)

See Also xPC Target target object methods getxpcenv and remscope.

xPC Target M-file demo scripts listed in “xPC Target Demos” on page
6-9.

17-62

getsignal

Purpose Value of target object signal index

Syntax MATLAB command line

getsignal(target_object, signal index)

Arguments target_object Name of a target object. The default name is tg.
signal_index Index number of the signal. This can be a value

of up to 1000 elements.

Description getsignal returns the value of the signal associated with
signal_index.

Examples Get the value of signal index 2.

getsignal(tg, 2)
ans = -3.3869e+006

17-63

getsignalid

Purpose Signal index or signal property from signal list

Syntax MATLAB command line

getsignalid(target_object, 'signal_name')
tg.getsignalid('signal_name')

Arguments target_object Name of an existing target object.
signal_name Enter the name of a signal from your Simulink

model. For blocks with a single signal, the
signal_name is equal to the block_name. For
blocks with multiple signals, the xPC Target
software appends S1, S2 ... to the block_name.

Description getsignalid returns the index or name of a signal from the signal list,
based on the path to the signal name. The block names must be entered
in full and are case sensitive. Note, enter for block_name the mangled
name that Real-Time Workshop uses for code generation.

Examples Get the signal index for the single signal from the Simulink block Gain1.

getsignalid(tg, 'Gain1') or tg.getsignalid('Gain1')
ans = 6

See Also xPC Target target object method getparamid.

xPC Target M-file demo scripts listed in “xPC Target Demos” on page
6-9.

Troubleshooting chapter question “Why Does the getparamid Function
Return Nothing?” on page 14-31.

17-64

getsignalidsfromlabel

Purpose Return vector of signal indices

Syntax MATLAB command line

getsignalidsfromlabel(target_object, signal_label)
target_object.getsignalidsfromlabel(signal_label)

Arguments target_object Name of a target object. The default name
is tg.

signal_name Signal label (from Simulink model).

Description getsignalidsfromlabel returns a vector of one or more signal indices
that are associated with the labeled signal, signal_label. This
function assumes that you have labeled the signal for which you request
the index (see the Signal name parameter of the “Signal Properties
Dialog Box” in the Simulink documentation). Note that the xPC Target
software refers to Simulink signal names as signal labels.

Examples Get the vector of signal indices for a signal labeled Gain.

>> tg.getsignalidsfromlabel('xpcoscGain')
ans =
0

See Also getsignallabel

17-65

getsignallabel

Purpose Return signal label

Syntax MATLAB command line

getsignallabel(target_object, signal_index)
target_object.getsignallabel(signal_index)

Arguments target_object Name of a target object. The default name
is tg.

signal_index Index number of the signal.

Description getsignallabel returns the signal label for the specified signal index,
signal_index. signal_label. This function assumes that you have
labeled the signal for which you request the label (see the Signal
name parameter of the “Signal Properties Dialog Box” in the Simulink
documentation). Note that the xPC Target software refers to Simulink
signal names as signal labels.

Examples >> getsignallabel(tg, 0)
ans =
xpcoscGain

See Also getsignallabel

17-66

getsignalname

Purpose Signal name from index list

Syntax MATLAB command line

getsignalname(target_object, signal_index)
target_object.getsignalname(signal_index)

Arguments target_object Name of a target object. The default name
is tg.

signal_index Index number of the signal.

Description getparamname returns one argument string, signal name, from the
index list for the specified signal index.

Examples Get the signal name of signal ID 2.

[sigName]=getsignalname(tg,2)
sigName =
Gain2

17-67

getTargetNames (env collection object)

Purpose Retrieve xPC Target environment object names

Syntax MATLAB command line

env_collection_object.getTargetNames

Description Method of xpctarget.targets objects. getTargetNames retrieves the
names of all existing xPC Target environment collection objects from
the xpctarget.targets class.

Examples Retrieve the names of all xPC Target environment collection objects in
the system. Assume that tgs represents the target object collection
environment.

tgs=xpctarget.targets;

get(tgs)

CCompiler: 'VisualC'

CompilerPath: 'd:\applications\Microsoft Visual Studio'

DefaultTarget: [1x1 xpctarget.env]

NumTargets: 2

tgs.getTargetNames

ans =

'TargetPC1'

'TargetPC2'

See Also xPC Target methods for the xPC Target environment collection object
method xpctarget.targets, set (env collection object), get
(env collection object)

17-68

getxpcenv

Purpose List environment properties assigned to MATLAB variable

Syntax MATLAB command line

getxpcenv

Description Function to list environment properties. This function displays, in the
MATLAB Command Window, the property names, the current property
values, and the new property values set for the xPC Target environment.

The environment properties define communication between the host PC
and target PC, the type of C compiler and its location, and the type of
target boot floppy created during the setup process. You can view these
properties using the getxpcenv function or the xPC Target Explorer.
An understanding of the environment properties will help you to
correctly configure the xPC Target environment.

Environment Property Description

Version xPC Target version number. Read only.
CCompiler Values are 'Watcom' and 'VisualC'. From the xPC

Target Explorer window compiler list, select either
Watcom or VisualC.

CompilerPath Value is a valid compiler root directory. Enter the
path where you installed a Watcom C/C++ or Microsoft
Visual Studio C/C++ compiler.

If the path is invalid or the directory does not contain
the compiler, an error message appears when you
use the function updatexpcenv or build a target
application.

Name Target PC name.

17-69

getxpcenv

Environment Property Description

TargetRAMSizeMB Values are 'Auto' and 'Manual'.

From the xPC Target Explorer window Target RAM
size list, select either Auto or Manual. If you select
Manual, enter the amount of RAM, in megabytes,
installed on the target PC. This property is set by
default to Auto.

Target RAM size defines the total amount of installed
RAM in the target PC. This RAM is used for the kernel,
target application, data logging, and other functions
that use the heap.

If Target RAM size is set to Auto, the target
application automatically determines the amount of
memory up to 64 MB. If the target PC does not contain
more than 64 MB of RAM, or you do not want to use
more than 64 MB, select Auto. If the target PC has
more than 64 MB of RAM, and you want to use more
than 64 MB, select Manual, and enter the amount of
RAM installed in the target PC.

17-70

getxpcenv

Environment Property Description

MaxModelSize BootFloppy and DOSLoader modes ignore this value.

Values are '1MB', '4MB', and '16MB'.

From the xPC Target Explorer window Maximum
model size list, select either 1 MB, 4 MB, or 16 MB.
This value is unavailable for BootFloppy or DOSLoader
modes.

Choosing the maximum model size reserves the
specified amount of memory on the target PC for the
target application. The remaining memory is used by
the kernel and by the heap for data logging.

Selecting too high a value leaves less memory for data
logging. Selecting too low a value does not reserve
enough memory for the target application and creates
an error.

Note, you cannot build a 16 MB target application to
run in StandAlone mode.

SecondaryIDE Values are 'off' and 'on'. Set this value to 'on' only
if you want to use the disks connected to a secondary
IDE controller. If you do not have disks connected to
the secondary IDE controller, leave this value set to
'off'.

HostTargetComm Values are 'RS232' and 'TcpIp'.

From the xPC Target Explorer window Host target
communication list, select either RS232 or TCP/IP.

If you select RS232, you also need to set the property
RS232HostPort. If you select TCP/IP, then you also
need to set all properties that start with TcpIp.

17-71

getxpcenv

Environment Property Description

RS232HostPort Values are 'COM1' and 'COM2'.

From the xPC Target Explorer window Host port list,
select either COM1 or COM2 for the connection on the
host computer. The xPC Target software automatically
determines the COM port on the target PC.

Before you can select an RS-232 port, you need to set
the HostTargetComm property to RS232.

RS232Baudrate Values are '115200', '57600', '38400', '19200',
'9600', '4800’, '2400', and '1200'.

From the Baud rate list, select 115200, 57600, 38400,
19200, 9600, 4800, 2400, or 1200.

TcpIpTargetAddress Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window Target PC IP
address box, enter a valid IP address for your target
PC. Ask your system administrator for this value.

For example, 192.168.0.10.
TcpIpTargetPort Value is 'xxxxx'.

In the xPC Target Explorer window TcpIp target
port box, enter a value greater than 20000.

This property is set by default to 22222 and should not
cause any problems. The number is higher than the
reserved area (telnet, ftp, ...) and it is only of use on
the target PC.

17-72

getxpcenv

Environment Property Description

TcpIpSubNetMask Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window LAN subnet
mask address text box, enter the subnet mask of your
LAN. Ask your system administrator for this value.

For example, your subnet mask could be
255.255.255.0.

TcpIpGateway Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window TcpIp gateway
address box, enter the IP address for your gateway.
This property is set by default to 255.255.255.255,
which means that a gateway is not used to connect to
the target PC.

If you communicate with your target PC from within
a LAN that uses gateways, and your host and target
computers are connected through a gateway, then you
need to enter a value for this property. If your LAN
does not use gateways, you do not need to change this
property. Ask your system administrator.

TcpIpTargetDriver Values are 'NE2000', 'SMC91C9X', 'I82559',
'RTLANCE', 'R8139', '3C90x', and 'NS83815'.

From the xPC Target Explorer window TcpIp target
driver list, select NE2000, SMC91C9X, I82559, RTLANCE,
R8139, 3C90x, or NS83815. The Ethernet card provided
with the system uses the NE2000 driver.

17-73

getxpcenv

Environment Property Description

TcpIpTargetBusType Values are 'PCI' and 'ISA'.

From the xPC Target Explorer window TcpIp target
bus type list, select either PCI or ISA. This property is
set by default to PCI, and determines the bus type of
your target PC. You do not need to define a bus type for
your host PC, which can be the same or different from
the bus type in your target PC.

If TcpIpTargetBusType is set to PCI, then the
properties TcpIpISAMemPort and TcpIpISAIRQ have no
effect on TCP/IP communication.

If you are using an ISA bus card, set
TcpIpTargetBusType to ISA and enter values
for TcpIpISAMemPort and TcpIpISAIRQ.

TcpIpTargetISAMemPort Value is '0xnnnn'.

If you are using an ISA bus Ethernet card, you must
enter values for the properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these properties must
correspond to the jumper settings or ROM settings on
your ISA bus Ethernet card.

On your ISA bus card, assign an IRQ and I/O port base
address by moving the jumpers on the card.

Set the I/O port base address to around 0x300. If
one of these hardware settings leads to a conflict in
your target PC, choose another I/O port base address
and make the corresponding changes to your jumper
settings.

17-74

getxpcenv

Environment Property Description

TcpIpTargetISAIRQ Value is 'n', where n is between 4 and 15.

If you are using an ISA bus Ethernet card, you must
enter values for the properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these properties must
correspond to the jumper settings or ROM settings on
the ISA-bus Ethernet card.

On your ISA bus card, assign an IRQ and I/O-port base
address by moving the jumpers on the card.

The MathWorks recommends setting the IRQ to 5,
10, or 11. If one of these hardware settings leads
to a conflict in your target PC, choose another IRQ
and make the corresponding changes to your jumper
settings.

TargetScope Values are 'Disabled' and 'Enabled'.

From the xPC Target Explorer window Enable target
scope list, select either Enabled or Disabled.

The property TargetScope is set by default to Enabled.
If you set TargetScope to Disabled, the target PC
displays information as text.

To use all the features of the target scope, you also
need to install a keyboard on the target PC.

EmbeddedOption Values are 'Disabled' and 'Enabled'. This property
is read only.

Note that the xPC Target Embedded Option product is
enabled only if you purchase an additional license.

17-75

getxpcenv

Environment Property Description

TargetBoot Values are 'BootFloppy', 'CDBoot', 'DOSLoader',
'NetworkBoot', and 'StandAlone'.

From the xPC Target Explorer window target PC
configuration pane, select one of the following tabs:
Boot Floppy, CD Boot, DOS Loader, Network
Boot, or Standalone.

If your license file does not include the license for
the xPC Target Embedded Option product, your only
options are BootFloppy, CDBoot, DOSLoader, and
NetworkBoot. With the xPC Target Embedded Option
product licensed and installed, you have the additional
choice of Standalone.

TargetMACAddress Physical target PC MAC address when booting within
a dedicated network.

BootFloppyLocation Drive name for creation of 3.5-inch target boot disk.
CDBootImageLocation Location of cdboot.iso file for creation of CD target

boot disk.
DOSLoaderLocation Location of DOSLoader files to boot target PCs from

devices other than 3.5-inch disk or CD.

Examples Return the xPC Target environment in the structure shown below. The
output in the MATLAB window is suppressed. The structure contains
three fields for property names, current property values, and new
property values.

env = getxpcenv
env =

propname: {1x25 cell}
actpropval: {1x25 cell}
newpropval: {1x25 cell}

17-76

getxpcenv

Display a list of the environment property names, current values, and
new values.

env = getxpcenv

See Also xPC Target functions setxpcenv, updatexpcenv, and xpcbootdisk

17-77

getxpcpci

Purpose Determine which PCI boards are installed in target PC

Syntax MATLAB command line

getxpcpci(target_object, 'type_of_boards')
getxpcpci(target_object, 'verbose')

Arguments target_object Variable name to reference the target
object.

type_of_boards Values are no arguments, 'all', and
'supported'.

verbose Argument to include the base address
register information in the PCI device
display.

Description The getxpcpci function displays, in the MATLAB window, which PCI
boards are installed in the target PC. By default, getxpcpci displays
this information for the target object, tg. If you have multiple target
PCs in your system, you can call the getxpcpci function for a particular
target object, target_object.

Only devices supported by driver blocks in the xPC Target block library
are displayed. The information includes the PCI bus number, slot
number, assigned IRQ number, manufacturer name, board name, device
type, manufacturer PCI ID, base address, and the board PCI ID itself.

For a successful query:

• The host-target communication link must be working. (The function
xpctargetping must return success before you can use the function
getxpcpci.)

• Either a target application is loaded or the loader is active. The
latter is used to query for resources assigned to a specific PCI device,

17-78

getxpcpci

which have to be provided to a driver block dialog box before the
model build process.

Examples The following example displays the installed PCI devices, not only
the devices supported by the xPC Target block library. This includes
graphics controllers, network cards, SCSI cards, and even devices that
are part of the motherboard chip set (for example, PCI-to-PCI bridges).

getxpcpci('all')

The following example displays a list of the currently supported PCI
devices in the xPC Target block library, including subvendor and
subdevice information.

getxpcpci('supported')

The following example displays a list of the currently supported PCI
devices in the xPC Target block library, including subvendor and
subdevice information and base address register contents.

getxpcpci('verbose')

When called with the 'supported' option, getxpcpci does not access
the target PC.

To display the list of PCI devices installed on the target PC, tg1, first
create a target object, tg1, for that target PC. Then, call getxpcpci
with the 'all' option. For example:

tg1=xpctarget.xpc('RS232','COM1','115200')
getxpcpci(tg1, 'all')

To return the result of a getxpcpci query in the struct pcidevs instead
of displaying it, assign the function to pcidevs. The struct pcidevs is
an array with one element for each detected PCI device. Each element
combines the information by a set of field names. The struct contains
more information compared to the displayed list. Its contents vary
according to the options you specify for the function.

17-79

getxpcpci

pcidevs = getxpcpci

17-80

Item (env collection object)

Purpose Retrieve specific xPC Target environment (env) object

Syntax MATLAB command line

env_collection_object.Item('env_object_name')

Description Method of xpctarget.targets objects. Item retrieves a specific xPC
Target environment object from the xpctarget.targets class. Use this
method to work with a particular target PC environment object.

Examples Retrieve a new xPC Target environment collection object from the
system. Assume that tgs represents the target object collection
environment.

tgs=xpctarget.targets;

get(tgs)

CCompiler: 'VisualC'

CompilerPath: 'd:\applications\Microsoft Visual Studio'

DefaultTarget: [1x1 xpctarget.env]

NumTargets: 1

tgs.getTargetNames

ans =

'TargetPC1'

'TargetPC2'

tgs.Item('TargetPC1')

ans =

xpctarget.env

See Also xPC Target methods for the xPC Target environment collection object
method xpctarget.targets, set (env collection object), get
(env collection object)

17-81

load

Purpose Download target application to target PC

Syntax MATLAB command line

load(target_object,'target_application')
target_object.load('target_application')

Arguments target_object Name of an existing target object.
target_application Simulink model and target application

name.

Description Before using this function, the target PC must be booted with the xPC
Target kernel, and the target application must be built in the current
working directory on the host PC.

If an application was previously loaded, the old target application is
first unloaded before downloading the new target application. The
method load is called automatically after the Real-Time Workshop
build process.

Note If you are running in Stand-Alone mode, this command has no
effect. To load a new application, you must rebuild the stand-alone
application with the new application, then reboot the target PC with
the updated stand-alone application.

Examples Load the target application xpcosc represented by the target object tg.

load(tg,'xpcosc') or tg.load('xpcosc')
+tg or tg.start or start(tg)

See Also xPC Target function unload.

xPC Target M-file demo scripts listed in “xPC Target Demos” on page
6-9.

17-82

loadparamset

Purpose Restore parameter values saved in specified file

Syntax MATLAB command line

loadparamset(target_object,'filename')
target_object.loadparamset('filename')

Arguments target_object Name of an existing target object.
filename Enter the name of the file that contains the saved

parameters.

Description loadparamset restores the target application parameter values saved
in the file filename. This file must be located on a local drive of the
target PC. This method assumes that you have a parameter file from
a previous run of the saveparamset method.

See Also xPC Target target object method saveparamset.

17-83

macaddr

Purpose Convert string-based MAC address to vector-based one

Syntax MATLAB command line

macaddr('MAC address')

Argument 'MAC address' String-based MAC address to be converted.

Description The macaddr function converts a string-based MAC address to a
vector-based MAC address. The string-based MAC address should be a
string comprised of six colon-delimited fields of two-digit hexadecimal
numbers.

Example macaddr('01:23:45:67:89:ab')

ans =

1 35 69 103 137 171

See Also “Model-Based Ethernet Communications Support” in the xPC Target
I/O Reference

17-84

makeDefault (env collection object)

Purpose Set specific target PC environment object as default

Syntax MATLAB command line

env_collection_object.makeDefault(`env_object_name')

Description Method of xpctarget.targets objects. makeDefault sets the specified
target PC environment object as the default target PC from the
xpctarget.targets class.

Examples Set the specified target collection object as the default target PC
collection. Assume that tgs represents the target object collection
environment.

tgs=xpctarget.targets;

get(tgs)

CCompiler: 'VisualC'

CompilerPath: 'd:\applications\Microsoft Visual Studio'

DefaultTarget: [1x1 xpctarget.env]

NumTargets: 2

tgs.getTargetNames

ans =

'TargetPC1'

'TargetPC2'

tgs.makeDefault('TargetPC2')

ans =

xpctarget.env

See Also xPC Target methods for the xPC Target environment collection object
method xpctarget.targets, set (env collection object), get
(env collection object)

17-85

mkdir

Purpose Make directory on target PC

Syntax MATLAB command line

mkdir(file_obj,dir_name)
file_obj.mkdir(dir_name)

Arguments file_obj Name of the xpctarget.ftp or xpctarget.fs object.
dir_name Name of the directory to be created.

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs
objects. From the host PC, makes a new directory in the current
directory on the target PC file system.

Note that to delete a directory from the target PC, you need to reboot
the PC into DOS or some other operating system and use a utility in
that system to delete the directory.

Examples Create a new directory, logs, in the target PC file system object fsys.

mkdir(fsys,logs)

or

fsys.mkdir(logs)

Create a new directory, logs, in the target PC FTP object f.

mkdir(f,logs) or f.mkdir(logs)

See Also xPC Target file object methods dir and pwd.

MATLAB mkdir function.

17-86

put

Purpose Copy file from host PC to target PC

Syntax MATLAB command line

put(file_obj,file_name)
file_obj.put(file_name)

Arguments file_obj Name of the xpctarget.ftp object.
file_name Name of the file to copy to the target PC.

Description Method of xpctarget.ftp objects. Copies a file from the host PC to the
target PC. file_name must be a file in the current directory of the host
PC. The method writes file_name to the target PC disk.

put might be slower than the get operation for the same file. This is
expected behavior.

Examples Copy the file data2.dat from the current directory of the host PC to the
current directory of the target PC FTP object f.

put(f,'data2.dat')

or

fsys.put('data2.dat')

See Also xPC Target file object methods dir and get (ftp).

17-87

pwd

Purpose Current directory path of target PC

Syntax MATLAB command line

pwd(file_obj)
file_obj.pwd

Arguments file_obj Name of the xpctarget.ftp or xpctarget.fs object.

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs
objects. Returns the pathname of the current target PC directory.

Examples Return the target PC current directory for the file system object fsys.

pwd(fsys) or fsys.pwd

Return the target PC current directory for the FTP object f.

pwd(f) or f.pwd

See Also xPC Target file object methods dir and mkdir.

MATLAB pwd function.

17-88

readxpcfile

Purpose Interpret raw data from xPC Target file format

Syntax file=readxpcfile(data)
readxpcfile('filename')

Arguments data Vector of uint8 bytes.
'filename' File from which the vector of uint8 bytes is read.

Vector is written

Description The readxpcfile function converts xPC Target file format content (in
bytes) to double precision data. A scope of type file creates the data.
After you download the data from a target PC, use one of the following
to read the data:

• fread function

• xpctarget.fs object fread method.

file=readxpcfile(data) converts data to double precision data
representing the signals and timestamps.

readxpcfile('filename') converts contents of 'filename' to double
precision data representing the signals and timestamps.

Examples Use the xpctarget.fs object to convert data:

f=xpctarget.fs;
h=f.fopen('filename');
data=f.fread(h);
f.fclose(h);
file = readxpcfile(data);

Use the xpctarget.ftp object in one of the following ways to convert
data:

xpcftp=xpctarget.ftp

17-89

readxpcfile

xpcftp.get('filename')
eadxpcfile('filename')

handle=fopen('filename')

data=fread(handle,'*uint8'); % Data should be read in uint8 format

fclose(handle

data=data';

datafile = readxpcfile(data);

See Also xPC Target file object methods get (ftp), fopen, and fread.

17-90

reboot

Purpose Reboot target PC

Syntax MATLAB command line

reboot(target_object)

Target PC command line

reboot

Arguments target_object Name of an existing target object.

Description reboot reboots the target PC, and if a target boot disk is still present,
the xPC Target kernel is reloaded.

You can also use this method to reboot the target PC back to Windows
after removing the target boot disk.

Note This method might not work on some target hardware.

See Also xPC Target target object methods load and unload.

17-91

Remove (env collection object)

Purpose Remove specific xPC Target environment object

Syntax MATLAB command line

env_collection_object.Remove('env_collection_object_name')

Description Method of xpctarget.targets objects. Remove removes an existing
xPC Target environment object from the environment collection. Note
that if you remove the target environment object of the default target
PC, the next target environment object becomes the default target PC.

Examples Remove an xPC Target environment collection object from the system.
Assume that tgs represents the target object collection environment.

tgs=xpctarget.targets;

get(tgs)

CCompiler: 'VisualC'

CompilerPath: 'd:\applications\Microsoft Visual Studio'

DefaultTarget: [1x1 xpctarget.env]

NumTargets: 2

tgs.getTargetNames

ans =

'TargetPC1'

'TargetPC2'

tgs.Remove('TargetPC2')

ans =

1

See Also xPC Target methods for the xPC Target environment collection object
method xpctarget.targets, set (env collection object), get
(env collection object)

17-92

removefile

Purpose Remove file from target PC

Syntax MATLAB command line

removefile(file_obj,file_name)
file_obj.removefile(file_name)

Arguments file_name Name of the file to remove from the target PC
file system.

file_obj Name of the xpctarget.fs object.

Description Method of xpctarget.fs objects. Removes a file from the target PC
file system.

Note You cannot recover this file once it is removed.

Examples Remove the file data2.dat from the target PC file system fsys.

removefile(fsys,'data2.dat')

or

fsys.removefile('data2.dat')

17-93

remscope

Purpose Remove scope from target PC

Syntax MATLAB command line

remscope(target_object, scope_number_vector)
target_object.remscope(scope_number_vector)
remscope(target_object)
target_object.remscope

Target PC command line

remscope scope_number
remscope 'all'

Arguments target_object Name of a target object. The default name is
tg.

scope_number_vectorVector of existing scope indices listed in the
target object property Scopes.

scope_number Single scope index.

Description If a scope index is not given, the method remscope deletes all scopes on
the target PC. The method remscope has no return value. The scope
object representing the scope on the host PC is not deleted.

17-94

remscope

Note that you can only permanently remove scopes that are added with
the method addscope. This is a scope that is outside a model. If you
remove a scope that has been added through a scope block (the scope
block is inside the model), a subsequent run of that model creates the
scope again.

Examples Remove a single scope.

remscope(tg,1)

or

tg.remscope(1)

Remove two scopes.

remscope(tg,[1 2])

or

tg.remscope([1,2])

Remove all scopes.

remscope(tg)

or

tg.remscope

See Also xPC Target target object methods addscope and getscope.

xPC Target M-file demo scripts listed in “xPC Target Demos” on page
6-9.

17-95

remsignal

Purpose Remove signals from scope represented by scope object

Syntax MATLAB command line

remsignal(scope_object)
remsignal(scope_object, signal_index_vector)
scope_object.remsignal(signal_index_vector)

Target command line

remsignal scope_index = signal_index, signal_index, . . .

Arguments scope_object MATLAB object created with the target object
method addscope or getscope.

signal_index_vector Index numbers from the scope object property
Signals. This argument is optional, and if it
is left out all signals are removed.

signal_index Single signal index.

Description remsignal removes signals from a scope object. The signals must be
specified by their indices, which you can retrieve using the target object
method getsignalid. If the scope_index_vector has two or more
scope objects, the same signals are removed from each scope. The
argument signal_index is optional; if it is left out, all signals are
removed.

Note You must stop the scope before you can remove a signal from it.

Examples Remove signals 0 and 1 from the scope represented by the scope object
sc1.

sc1.get('signals')
ans= 0 1

17-96

remsignal

Remove signals from the scope on the target PC with the scope object
property Signals updated.

remsignal(sc1,[0,1])

or

sc1.remsignal([0,1])

See Also The xPC Target scope object method remsignal and the target object
method getsignalid.

17-97

rmdir

Purpose Remove directory from target PC

Syntax MATLAB command line

rmdir(file_obj,dir_name)
file_obj.rmdir(dir_name)

Arguments dir_name Name of the directory to remove from the target PC
file system.

file_obj Name of the xpctarget.fs object.

Description Method of xpctarget.fsbase, xpctarget.ftp, and xpctarget.fs
objects. Removes a directory from the target PC file system.

Note You cannot recover this directory once it is removed.

Examples Remove the directory data2dir.dat from the target PC file system
fsys.

rmdir(f,'data2dir.dat')

or

fsys.rmdir('data2dir.dat')

17-98

saveparamset

Purpose Save current target application parameter values

Syntax MATLAB command line

saveparamset(target_object,'filename')
target_object.saveparamset('filename')

Arguments target_object Name of an existing target object.
filename Enter the name of the file to contain the saved

parameters.

Description saveparamset saves the target application parameter values in the
file filename. This method saves the file on a local drive of the target
PC (C:\ by default). You can later reload these parameters with the
loadparamset function.

You might want to save target application parameter values if you
change these parameter values while the application is running in
real time. Saving these values enables you to easily recreate target
application parameter values from a number of application runs.

See Also xPC Target target object method loadparamset

17-99

selectdrive

Purpose Select target PC drive

Syntax MATLAB command line

selectdrive(file_obj,'drive')
file_obj.selectdrive('drive')

Arguments drive Name of the drive to set.

file_obj Name of the xpctarget.fs object.

Description Method of xpctarget.fs objects. selectdrive sets the current drive
of the target PC to the specified string. Enter the drive string with an
extra backslash (\). For example, D:\\ for the D:\ drive.

Note Use the cd method instead to get the same behavior.

Examples Set the current target PC drive to D:\.

selectdrive(fsys,'D:\\')

or

fsys.selectdrive('D:\\')

17-100

set (env collection object)

Purpose Change target object environment collection object property values

Syntax MATLAB command line

set(env_collection_object)

set(env_collection_object, 'property_name1',

'property_value1','property_name2', 'property_value2', . . .)

env_collection_object.set('property_name1',

'property_value1')

set(env_collection_object, property_name_vector,

property_value_vector)

env_collection_object.property_name = property_value

Arguments env_collection_object Name of a target environment collection
object.

'property_name' Name of a target object environment
collection property. Always use quotation
marks.

property_value Value for a target object environment
collection property. Always use quotation
marks for character strings; quotation
marks are optional for numbers.

Description set sets the values of environment properties for a collection of target
object environments. Not all properties are user writable.

Properties must be entered in pairs or, using the alternative syntax, as
one-dimensional cell arrays of the same size. This means they must
both be row vectors or both column vectors, and the corresponding
values for properties in property_name_vector are stored in
property_value_vector.

The environment properties for a target object collection are listed in
the following table. This table includes a description of the properties
and which properties you can change directly by assigning a value.

17-101

set (env collection object)

Property Description Writable

CCompiler Values are 'Watcom' and 'VisualC'.
From the xPC Target Explorer
window compiler list, select either
Watcom or VisualC.

Yes

CompilerPath Value is a valid compiler root
directory. Enter the path where
you installed a Watcom C/C++
or Microsoft Visual Studio C/C++
compiler.

If the path is invalid or the directory
does not contain the compiler, an
error message appears when you use
the function updatexpcenv or build
a target application.

Yes

DefaultTarget Contains an instance of the
default target environment object
(xpctarget.env).

No

FloppyDrive Allows you to set the 3.5-inch drive
letter to the one designated by your
target PC. By default, FloppyDrive
is set to a:. Set this property to b:
only if the target PC designates it.
As necessary, set this value before
creating a boot disk. Valid values
are 'a:' and 'b:'.

Yes

NumTargets Contains the number of target
objects in the xPC Target system.
Note that this is not the actual
number of target PCs in the system.

No

Examples List the values of all the target object environment property values.
Assume that tgs represents the target object environment.

17-102

set (env collection object)

tgs=xpctarget.targets;
set(tgs)
ans =

CCompiler: {2x1 cell}
CompilerPath: {}

DefaultTarget: {}
NumTargets: {}

Change the property CCompiler to Watcom.

tgs.set('CCompiler','VisualC')

or

set(tgs, 'CCompiler','VisualC')

As an alternative to the method set, use the target object property
CCompiler. In the MATLAB window, type

tgs.CCompiler ='VisualC'

See Also xPC Target target object method get (env collection object)

Built-in MATLAB functions get and set

17-103

set (env object)

Purpose Change target environment object property values

Syntax MATLAB command line

set(env_object)
set(env_object, 'property_name1', 'property_value1',
'property_name2', 'property_value2', . . .)
env_object.set('property_name1', 'property_value1')
set(env_object, property_name_vector,
property_value_vector)
env_object.property_name = property_value

Arguments env_object Name of a target environment object.
'property_name' Name of a target environment object property.

Always use quotation marks.
property_value Value for a target environment object property.

Always use quotation marks for character
strings; quotation marks are optional for
numbers.

Description set sets the properties of the target environment object. Not all
properties are user writable.

Properties must be entered in pairs or, using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they must
both be row vectors or both column vectors, and the corresponding
values for properties in property_name_vector are stored in
property_value_vector. The writable properties for a target
environment object are listed in the following table. This table includes
a description of the properties:

17-104

set (env object)

Environment Property Description Writable

Name Target PC name. Yes
HostTargetComm Values are 'RS232' and 'TcpIp'.

From the xPC Target Explorer window
Host target communication list,
select either RS232 or TCP/IP.

If you select RS232, you also need to
set the property RS232HostPort. If
you select TCP/IP, then you also need
to set all properties that start with
TcpIp.

Yes

17-105

set (env object)

Environment Property Description Writable

TargetRAMSizeMB Values are 'Auto' and 'Manual'.

From the xPC Target Explorer
window Target RAM size list, select
either Auto or Manual. If you select
Manual, enter the amount of RAM, in
megabytes, installed on the target PC.
This property is set by default to Auto.

Target RAM size defines the total
amount of installed RAM in the target
PC. This RAM is used for the kernel,
target application, data logging, and
other functions that use the heap.

If Target RAM size is set to Auto,
the target application automatically
determines the amount of memory up
to 64 MB. If the target PC does not
contain more than 64 MB of RAM, or
you do not want to use more than 64
MB, select Auto. If the target PC has
more than 64 MB of RAM, and you
want to use more than 64 MB, select
Manual, and enter the amount of RAM
installed in the target PC.

Yes

17-106

set (env object)

Environment Property Description Writable

MaxModelSize BootFloppy and DOSLoader modes
ignore this value.

Values are '1MB', '4MB', and '16MB.

From the xPC Target Explorer
window Maximum model size
list, select either 1 MB, 4 MB, or 16
MB. This value is unavailable for
BootFloppy or DOSLoader modes.

Choosing the maximum model size
reserves the specified amount of
memory on the target PC for the
target application. The remaining
memory is used by the kernel and by
the heap for data logging.

Selecting too high a value leaves less
memory for data logging. Selecting too
low a value does not reserve enough
memory for the target application and
creates an error.

Note that you cannot build a 16
MB target application to run in
StandAlone mode.

Yes

17-107

set (env object)

Environment Property Description Writable

TargetScope Values are 'Disabled' and
'Enabled'.

From the xPC Target Explorer
window Enable target scope list,
select either Enabled or Disabled.

The property TargetScope is set
by default to Enabled. If you set
TargetScope to Disabled, the target
PC displays information as text.

To use all the features of the target
scope, you also need to install a
keyboard on the target PC.

Yes

DOSLoaderLocation Location of DOSLoader files to boot
target PCs from devices other than
3.5–inch disk or CD.

Yes

BootFloppyLocation Drive name for creation of 3.5-inch
target boot disk.

Yes

CDBootImageLocation Location of cdboot.iso file for
creation of CD target boot disk.

Yes

17-108

set (env object)

Environment Property Description Writable

TargetBoot Values are 'BootFloppy', 'CDBoot',
'DOSLoader', 'NetworkBoot', and
'StandAlone'.

From the xPC Target Explorer
window target PC configuration pane,
select one of the following tabs: Boot
Floppy, CD Boot, DOS Loader,
Network Boot, or Standalone.

If your license file does not include the
license for the xPC Target Embedded
Option product, your only options are
BootFloppy, CDBoot, DOSLoader, and
NetworkBoot. With the xPC Target
Embedded Option product licensed
and installed, you have the additional
choice of Standalone.

Yes

EmbeddedOption Values are 'Disabled' and
'Enabled'. This property is read
only.

Note that the xPC Target Embedded
Option product is enabled only if you
purchase an additional license.

Yes

SecondaryIDE Values are 'off' and 'on'. Set this
value to 'on' only if you want to use
the disks connected to a secondary
IDE controller. If you do not have
disks connected to the secondary IDE
controller, leave this value set to
'off'.

Yes

17-109

set (env object)

Environment Property Description Writable

RS232HostPort Values are 'COM1' and 'COM2'.

From the xPC Target Explorer
window Host port list, select either
COM1 or COM2 for the connection on
the host computer. The xPC Target
software automatically determines
the COM port on the target PC.

Before you can select an RS-232 port,
you need to set the HostTargetComm
property to RS232.

Yes

RS232Baudrate Values are '115200', '57600',
'38400', '19200', '9600', '4800’,
'2400', and '1200'.

From the Baud rate list, select
115200, 57600, 38400, 19200, 9600,
4800, 2400, or 1200.

Yes

TcpIpTargetAddress Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window
Target PC IP address box, enter a
valid IP address for your target PC.
Ask your system administrator for
this value.

For example, 192.168.0.10.

Yes

17-110

set (env object)

Environment Property Description Writable

TcpIpTargetPort Value is 'xxxxx'.

In the xPC Target Explorer window
TcpIp target port box, enter a value
greater than 20000.

This property is set by default to
22222 and should not cause any
problems. The number is higher than
the reserved area (telnet, ftp, ...)
and it is only of use on the target PC.

Yes

TcpIpSubNetMask Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window
LAN subnet mask address text box,
enter the subnet mask of your LAN.
Ask your system administrator for
this value.

For example, your subnet mask could
be 255.255.255.0.

Yes

17-111

set (env object)

Environment Property Description Writable

TcpIpGateway Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window
TcpIp gateway address box, enter
the IP address for your gateway.
This property is set by default to
255.255.255.255, which means that
a gateway is not used to connect to
the target PC.

If you communicate with your target
PC from within a LAN that uses
gateways, and your host and target
computers are connected through a
gateway, then you need to enter a
value for this property. If your LAN
does not use gateways, you do not
need to change this property. Ask
your system administrator.

Yes

TcpIpTargetDriver Values are 'NE2000', 'SMC91C9X',
'I82559', 'RTLANCE', 'R8139',
'3C90x', and 'NS83815'.

From the xPC Target Explorer
window TcpIp target driver list,
select NE2000, SMC91C9X, I82559,
RTLANCE, 'R8139', 3C90x, and
NS83815. The Ethernet card provided
with the xPC Target software uses the
NE2000 driver.

Yes

17-112

set (env object)

Environment Property Description Writable

TcpIpTargetBusType Values are 'PCI' and 'ISA'.

From the xPC Target Explorer
window TcpIp target bus type
list, select either PCI or ISA. This
property is set by default to PCI, and
determines the bus type of your target
PC. You do not need to define a bus
type for your host PC, which can be
the same or different from the bus
type in your target PC.

If TcpIpTargetBusType is set to PCI,
then the properties TcpIpISAMemPort
and TcpIpISAIRQ have no effect on
TCP/IP communication.

If you are using an ISA bus card,
set TcpIpTargetBusType to ISA and
enter values for TcpIpISAMemPort
and TcpIpISAIRQ.

Yes

17-113

set (env object)

Environment Property Description Writable

TcpIpTargetISAMem Port Value is '0xnnnn'.

If you are using an ISA bus Ethernet
card, you must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings on
your ISA bus Ethernet card.

On your ISA bus card, assign an IRQ
and I/O port base address by moving
the jumpers on the card.

Set the I/O port base address to
around 0x300. If one of these
hardware settings leads to a conflict
in your target PC, choose another
I/O port base address and make the
corresponding changes to your jumper
settings.

Yes

TargetMACAddress Physical target PC MAC address
when booting within a dedicated
network.

Yes

CCompiler Values are 'Watcom' and 'VisualC'.
From the xPC Target Explorer
window compiler list, select either
Watcom or VisualC.

Yes

17-114

set (env object)

Environment Property Description Writable

CompilerPath Value is a valid compiler root
directory. Enter the path where you
installed aWatcom C/C++ or Microsoft
Visual Studio C/C++ compiler.

If the path is invalid or the directory
does not contain the compiler, an
error message appears when you use
the function updatexpcenv or build a
target application.

Yes

TcpIpTargetISAIRQ Value is 'n', where n is between 4
and 15.

If you are using an ISA bus Ethernet
card, you must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings on
the ISA-bus Ethernet card.

On your ISA bus card, assign an IRQ
and I/O-port base address by moving
the jumpers on the card.

The MathWorks recommends setting
the IRQ to 5, 10, or 11. If one of these
hardware settings leads to a conflict
in your target PC, choose another IRQ
and make the corresponding changes
to your jumper settings.

Yes

See Also get (env object)

17-115

set (scope object)

Purpose Change property values for scope objects

Syntax MATLAB command line

set(scope_object_vector)
set(scope_object_vector, property_name1, property_value1,
property_name2, property_value2, . . .)
scope_object_vector.set('property_name1', property_value1,
..)
set(scope_object, 'property_name', property_value, . . .)

Arguments scope_object Name of a scope object or a vector of scope objects.
’property_name’Name of a scope object property. Always use

quotation marks.
property_value Value for a scope object property. Always use

quotation marks for character strings; quotation
marks are optional for numbers.

Description Method for scope objects. Sets the properties of the scope object. Not
all properties are user writable. Scope object properties let you select
signals to acquire, set triggering modes, and access signal information
from the target application. You can view and change these properties
using scope object methods.

Properties must be entered in pairs or, using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they must
both be row vectors or both column vectors, and the corresponding
values for properties in property_name_vector are stored in
property_value_vector.

The function set typically does not return a value. However,
if called with an explicit return argument, for example, a =
set(target_object, property_name, property_value), it returns
the values of the properties after the indicated settings have been made.

17-116

set (scope object)

The properties for a scope object are listed in the following table. This
table includes descriptions of the properties and the properties you can
change directly by assigning a value.

Property Description Writable

Application Name of the Simulink model associated
with this scope object.

No

AutoRestart For scopes of type 'File', enable the file
scope to collect data up to the number of
samples (NumSamples), then start over
again, appending the new data to the
end of the signal data file. Clear the
AutoRestart check box to have the scope
of type 'File' collect data up to Number
of samples, then stop.

If the named signal data file already exists
when you start the target application, the
software overwrites the old data with the
new signal data.

For scopes of type 'Host' or 'Target', this
parameter has no effect.

No

Data Contains the output data for a single data
package from a scope.

For scopes of type 'Target' or 'File', this
parameter has no effect.

No

Decimation A number n, where every nth sample is
acquired in a scope window.

Yes

17-117

set (scope object)

Property Description Writable

Filename Provide a name for the file to contain the
signal data. By default, the target PC
writes the signal data to a file named
C:\data.dat for scope blocks. Note that
for scopes of type 'File' created through
the MATLAB interface, there is no name
initially assigned to FileName. After you
start the scope, the software assigns a
name for the file to acquire the signal data.
This name typically consists of the scope
object name, ScopeId, and the beginning
letters of the first signal added to the scope.

For scopes of type 'Host' or 'Target', this
parameter has no effect.

No

Grid Values are 'on' and 'off'.

For scopes of type 'Host' or 'File', this
parameter has no effect.

Yes

17-118

set (scope object)

Property Description Writable

Mode For scopes of type 'Target', indicate
how a scope displays the signals. Values
are 'Numerical', 'Redraw' (default),
'Sliding', and 'Rolling'.

For scopes of type File, specify when a file
allocation table (FAT) entry is updated.
Values are 'Lazy' or 'Commit'. Both
modes write the signal data to the file.
With 'Commit' mode, each file write
operation simultaneously updates the FAT
entry for the file. This mode is slower, but
the file system always knows the actual file
size. With 'Lazy' mode, the FAT entry is
updated only when the file is closed and
not during each file write operation. This
mode is faster, but if the system crashes
before the file is closed, the file system
might not know the actual file size (the file
contents, however, will be intact).

For scopes of type Host, this parameter
has no effect.

Yes

NumPrePostSamples For scopes of type 'Host' or 'Target',
this parameter is the number of samples
collected before or after a trigger event.
The default value is 0. Entering a negative
value collects samples before the trigger
event. Entering a positive value collects
samples after the trigger event. If you set
TriggerMode to 'FreeRun', this property
has no effect on data acquisition.

Yes

17-119

set (scope object)

Property Description Writable

NumSamples Number of contiguous samples captured
during the acquisition of a data package.
If the scope stops before capturing
this number of samples, the scope has
the collected data up to the end of
data collection, then has zeroes for the
remaining uncollected data. Note that
you should know what type of data you
are collecting, it is possible that your data
contains zeroes.

For scopes of type 'File', this
parameter works in conjunction with
the AutoRestart check box. If the
AutoRestart box is selected, the file scope
collects data up to Number of Samples,
then starts over again, overwriting the
buffer. If the AutoRestart box is not
selected, the file scope collects data only up
to Number of Samples, then stops.

Yes

ScopeId A numeric index, unique for each scope. No
Signals List of signal indices from the target object

to display on the scope.
Yes

Status Indicate whether data is being acquired,
the scope is waiting for a trigger, the
scope has been stopped (interrupted),
or acquisition is finished. Values
are 'Acquiring', 'Ready for being
Triggered', 'Interrupted', and
'Finished'.

No

Time Contains the time data for a single data
package from a scope.

No

17-120

set (scope object)

Property Description Writable

TriggerLevel If TriggerMode is 'Signal', indicates the
value the signal has to cross to trigger the
scope and start acquiring data. The trigger
level can be crossed with either a rising or
falling signal.

Yes

TriggerMode Trigger mode for a scope. Valid values
are 'FreeRun' (default), 'Software',
'Signal', and 'Scope'.

Yes

TriggerSample If TriggerMode is 'Scope', then
TriggerSample specifies which sample
of the triggering scope the current
scope should trigger on. For example, if
TriggerSample is 0 (default), the current
scope triggers on sample 0 (first sample
acquired) of the triggering scope. This
means that the two scopes will be perfectly
synchronized. If TriggerSample is 1, the
first sample (sample 0) of the current scope
will be at the same instant as sample
number 1 (second sample in the acquisition
cycle) of the triggering scope.

As a special case, setting TriggerSample
to -1 means that the current scope is
triggered at the end of the acquisition cycle
of the triggering scope. Thus, the first
sample of the triggering scope is acquired
one sample after the last sample of the
triggering scope.

Yes

17-121

set (scope object)

Property Description Writable

TriggerScope If TriggerMode is 'Scope', identifies the
scope to use for a trigger. A scope can
be set to trigger when another scope is
triggered. You do this by setting the slave
scope property TriggerScope to the scope
index of the master scope.

Yes

TriggerSignal If TriggerMode is 'Signal', identifies the
block output signal to use for triggering
the scope. You identify the signal with a
signal index from the target object property
Signal.

Yes

TriggerSlope If TriggerMode is 'Signal', indicates
whether the trigger is on a rising or falling
signal. Values are 'Either' (default),
'Rising', and 'Falling'.

Yes

Type Determines whether the scope is displayed
on the host computer or on the target
computer. Values are 'Host', 'Target',
and 'File'.

Yes

17-122

set (scope object)

Property Description Writable

WriteSize Enter the block size, in bytes, of the data
chunks. This parameter specifies that
a memory buffer, of length number of
samples (NumSamples), collect data in
multiples of WriteSize. By default, this
parameter is 512 bytes, which is the typical
disk sector size. Using a block size that is
the same as the disk sector size provides
optimal performance.

If you experience a system crash, you can
expect to lose an amount of data the size of
WriteSize.

For scopes of type 'Host' or 'Target', this
parameter has no effect.

Yes

YLimit Minimum and maximum y-axis values.
This property can be set to 'auto'.

For scopes of type 'Host' or 'File', this
parameter has no effect.

Yes

Examples Get a list of writable properties for a scope object.

sc1 = getscope(tg,1)
set(sc1)
ans=

NumSamples: {}
Decimation: {}

TriggerMode: {5x1 cell}
TriggerSignal: {}
TriggerLevel: {}
TriggerSlope: {4x1 cell}
TriggerScope: {}

TriggerSample: {}
Signals: {}

17-123

set (scope object)

NumPrePostSamples: {}
Mode: {5x1 cell}

YLimit: {}
Grid: {}

The property value for the scope object sc1 is changed to on:

sc1.set('grid', 'on') or set(sc1, 'grid', 'on')

See Also The xPC Target scope object method get (scope object). The target
object methods set (target application object) and get (target
application object). The built-in MATLAB functions get and set.

17-124

set (target application object)

Purpose Change target application object property values

Syntax MATLAB command line

set(target_object)
set(target_object, 'property_name1', 'property_value1',
'property_name2', 'property_value2', . . .)
target_object.set('property_name1', 'property_value1')
set(target_object, property_name_vector,
property_value_vector)
target_object.property_name = property_value

Target PC command line - Commands are limited to the target object
properties stoptime, sampletime, and parameters.

parameter_name = parameter_value
stoptime = floating_point_number
sampletime = floating_point_number

Arguments target_object Name of a target object.
'property_name' Name of a target object property. Always use

quotation marks.
property_value Value for a target object property. Always

use quotation marks for character strings;
quotation marks are optional for numbers.

Description set sets the properties of the target object. Not all properties are user
writable.

Properties must be entered in pairs or, using the alternate syntax, as
one-dimensional cell arrays of the same size. This means they must
both be row vectors or both column vectors, and the corresponding
values for properties in property_name_vector are stored in
property_value_vector. The writable properties for a target object

17-125

set (target application object)

are listed in the following table. This table includes a description of
the properties:

Property Description Writable

LogMode Controls which data points are
logged:

• Time-equidistant logging.
Logs a data point at every
time interval. Set value to
'Normal'.

• Value-equidistant logging.
Logs a data point only when
an output signal from the
OutputLog changes by a
specified value (increment).
Set the value to the difference
in signal values.

Yes

SampleTime Time between samples. This
value equals the step size,
in seconds, for updating the
model equations and posting the
outputs. See “User Interaction”
in the xPC Target Getting
Started Guide for limitations
on target property changes to
sample times.

Yes

ShowParameters Flag set to view or hide the list of
parameters from your Simulink
blocks. This list is shown when
you display the properties for a
target object. Values are 'on'
and 'off'.

Yes

17-126

set (target application object)

Property Description Writable

ShowSignals Flag set to view or hide the list
of signals from your Simulink
blocks. This list is shown when
you display the properties for a
target object. Values are 'on'
and 'off'.

Yes

StopTime Time when the target
application stops running.
Values are in seconds.
The original value is set
in the Simulation menu
Configuration Parameters
dialog.

When the ExecTime reaches the
StopTime, the application stops
running.

Yes

ViewMode Display either all scopes or a
single scope on the target PC.
Value is 'all' or a single scope
index. This property is active
only if the environment property
TargetScope is set to enabled.

Yes

The function set typically does not return a value. However, if called
with an explicit return argument, for example, a = set(target_object,
property_name, property_value), it returns the value of the
properties after the indicated settings have been made.

Examples Get a list of writable properties for a scope object.

set(tg)
ans =

StopTime: {}
SampleTime: {}

17-127

set (target application object)

ViewMode: {}
LogMode: {}

ShowParameters: {}
ShowSignals: {}

Change the property ShowSignals to on.

tg.set('showsignals', 'on') or set(tg, 'showsignals', 'on')

As an alternative to the method set, use the target object property
ShowSignals. In the MATLAB window, type

tg.showsignals ='on'

See Also xPC Target target object method get (target application object).

Scope object methods get (scope object) and set (scope object).

Built-in MATLAB functions get and set.

xPC Target M-file demo scripts listed in “xPC Target Demos” on page
6-9.

17-128

setparam

Purpose Change writable target object parameters

Syntax MATLAB command line

setparam(target_object, 'parameter_value')

Arguments target_object Name of an existing target object. The default
name is tg.

parameter_value Value for a target object parameter.

Description Method of a target object. Set the value of the target parameter. This
method returns a structure that stores the parameter index, previous
parameter values, and new parameter values in the following fields:

• parIndexVec

• OldValues

• NewValues

Examples Set the value of parameter index 5 to 100.

setparam(tg, 5, 100)
ans =
parIndexVec: 5
OldValues: 400
NewValues: 100

Simultaneously set values for multiple parameters. Use the cell array
format to specify new parameter values.

setparam(tg, [1 5],{10,100})
ans =
parIndexVec: [1 5]
OldValues: {[2] [4]}
NewValues: {[10] [100]}

17-129

setxpcenv

Purpose Change xPC Target environment properties

Syntax MATLAB command line

setxpcenv('property_name', 'property_value')
setxpcenv('prop_name1', 'prop_val1', 'prop_name2',
'prop_val2')
setxpcenv

Arguments property_name Not case sensitive. Property names can be
shortened as long as they can be differentiated
from the other property names.

property_value Character string. Type setxpcenv without
arguments to get a listing of allowed values.
Property values are not case sensitive.

Description Function to enter new values for environment properties. If the new
value is different from the current value, the property is marked as
having a new value. Use the function updatexpcenv to change the
current properties to the new properties.

The environment properties define communication between the host
PC and target PC, the type of C compiler and its location, and the
type of target boot floppy created during the setup process. With
the exception of the Version property, you can set these properties
using the xpcexplr function or the xPC Target Explorer window. An
understanding of the environment properties will help you to correctly
configure the xPC Target environment.

Environment Property Description

Version xPC Target version number. Read only.
CCompiler Values are 'Watcom' and 'VisualC'. From the xPC Target

Explorer window compiler list, select either Watcom or
VisualC.

17-130

setxpcenv

Environment Property Description

CompilerPath Value is a valid compiler root directory. Enter the path
where you installed a Watcom C/C++ or Microsoft Visual
Studio C/C++ compiler.

If the path is invalid or the directory does not contain the
compiler, an error message appears when you use the
function updatexpcenv or build a target application.

TargetRAMSizeMB Values are 'Auto' and 'Manual'.

From the xPC Target Explorer window Target RAM size
list, select either Auto or Manual. If you select Manual,
enter the amount of RAM, in megabytes, installed on the
target PC. This property is set by default to Auto.

Target RAM size defines the total amount of installed
RAM in the target PC. This RAM is used for the kernel,
target application, data logging, and other functions that
use the heap.

If Target RAM size is set to Auto, the target application
automatically determines the amount of memory up to 64
MB. If the target PC does not contain more than 64 MB of
RAM, or you do not want to use more than 64 MB, select
Auto. If the target PC has more than 64 MB of RAM, and
you want to use more than 64 MB, select Manual, and enter
the amount of RAM installed in the target PC.

17-131

setxpcenv

Environment Property Description

MaxModelSize BootFloppy and DOSLoader modes ignore this value.

Values are '1MB', '4MB', and '16MB'.

From the xPC Target Explorer window Maximum model
size list, select either 1 MB, 4 MB, or 16 MB. This value is
unavailable for BootFloppy or DOSLoader modes.

Choosing the maximum model size reserves the specified
amount of memory on the target PC for the target
application. The remaining memory is used by the kernel
and by the heap for data logging.

Selecting too high a value leaves less memory for data
logging. Selecting too low a value does not reserve enough
memory for the target application and creates an error.

SecondaryIDE Values are 'off' and 'on'. Set this value to 'on' only
if you want to use the disks connected to a secondary
IDE controller. If you do not have disks connected to the
secondary IDE controller, leave this value set to 'off'.

HostTargetComm Values are 'RS232' and 'TcpIp'.

From the xPC Target Explorer window Host target
communication list, select either RS232 or TCP/IP.

If you select RS232, you also need to set the property
RS232HostPort. If you select TCP/IP, then you also need to
set all properties that start with TcpIp.

RS232HostPort Values are 'COM1' and 'COM2'.

From the xPC Target Explorer window Host port list,
select either COM1 or COM2 for the connection on the
host computer. The xPC Target software automatically
determines the COM port on the target PC.

Before you can select an RS-232 port, you need to set the
HostTargetComm property to RS232.

17-132

setxpcenv

Environment Property Description

RS232Baudrate Values are '115200', '57600', '38400', '19200', '9600',
'4800’, '2400', and '1200'.

From the Baud rate list, select 115200, 57600, 38400,
19200, 9600, 4800, 2400, or 1200.

TcpIpTargetAddress Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window Target PC IP
address box, enter a valid IP address for your target PC.
Ask your system administrator for this value.

For example, 192.168.0.10.
TcpIpTargetPort Value is 'xxxxx'.

In the xPC Target Explorer window TcpIp target port
box, enter a value greater than 20000.

This property is set by default to 22222 and should not
cause any problems. The number is higher than the
reserved area (telnet, ftp, ...) and it is only of use on the
target PC.

TcpIpSubNetMask Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window LAN subnet mask
address text box, enter the subnet mask of your LAN. Ask
your system administrator for this value.

For example, your subnet mask could be 255.255.255.0.

17-133

setxpcenv

Environment Property Description

TcpIpGateway Value is 'xxx.xxx.xxx.xxx'.

In the xPC Target Explorer window TcpIp gateway
address box, enter the IP address for your gateway. This
property is set by default to 255.255.255.255, which
means that a gateway is not used to connect to the target
PC.

If you communicate with your target PC from within a LAN
that uses gateways, and your host and target computers
are connected through a gateway, then you need to enter a
value for this property. If your LAN does not use gateways,
you do not need to change this property. Ask your system
administrator.

TcpIpTargetDriver Values are 'NE2000', 'SMC91C9X', 'I82559', 'RTLANCE',
'R8139', '3C90x', and 'NS83815'.

From the xPC Target Explorer window TcpIp target
driver list, select NE2000, SMC91C9X, I82559, RTLANCE,
R8139, 3C90x, or NS83815. The Ethernet card provided with
the system uses the NE2000 driver.

TcpIpTargetBusType Values are 'PCI' and 'ISA'.

From the xPC Target Explorer window TcpIp target bus
type list, select either PCI or ISA. This property is set by
default to PCI, and determines the bus type of your target
PC. You do not need to define a bus type for your host PC,
which can be the same or different from the bus type in
your target PC.

If TcpIpTargetBusType is set to PCI, then the properties
TcpIpISAMemPort and TcpIpISAIRQ have no effect on
TCP/IP communication.

If you are using an ISA bus card, set TcpIpTargetBusType
to ISA and enter values for TcpIpISAMemPort and
TcpIpISAIRQ.

17-134

setxpcenv

Environment Property Description

TcpIpTargetISAMemPort Value is '0xnnnn'.

If you are using an ISA bus Ethernet card, you must
enter values for the properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these properties must
correspond to the jumper settings or ROM settings on your
ISA bus Ethernet card.

On your ISA bus card, assign an IRQ and I/O port base
address by moving the jumpers on the card.

Set the I/O port base address to around 0x300. If one of
these hardware settings leads to a conflict in your target
PC, choose another I/O port base address and make the
corresponding changes to your jumper settings.

TcpIpTargetISAIRQ Value is 'n', where n is between 4 and 15.

If you are using an ISA bus Ethernet card, you must
enter values for the properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these properties must
correspond to the jumper settings or ROM settings on the
ISA-bus Ethernet card.

On your ISA bus card, assign an IRQ and I/O-port base
address by moving the jumpers on the card.

The MathWorks recommends setting the IRQ to 5, 10, or
11. If one of these hardware settings leads to a conflict
in your target PC, choose another IRQ and make the
corresponding changes to your jumper settings.

17-135

setxpcenv

Environment Property Description

TargetScope Values are 'Disabled' and 'Enabled'.

From the xPC Target Explorer window Enable target
scope list, select either Enabled or Disabled.

The property TargetScope is set by default to Enabled. If
you set TargetScope to Disabled, the target PC displays
information as text.

To use all the features of the target scope, you also need to
install a keyboard on the target PC.

BootFloppyLocation Drive name for creation of 3.5-inch target boot disk.
TargetMACAddress Physical target PC MAC address when booting within a

dedicated network.
CDBootImageLocation Location of cdboot.iso file for creation of CD target boot

disk.
DOSLoaderLocation Location of DOSLoader files to boot target PCs from devices

other than 3.5–inch disk or CD.

17-136

setxpcenv

Environment Property Description

TargetBoot Values are 'BootFloppy', 'CDBoot', 'DOSLoader',
'NetworkBoot', and 'StandAlone'.

From the xPC Target Explorer window target PC
configuration pane, select one of the following tabs: Boot
Floppy, CD Boot, DOS Loader, Network Boot, or
Standalone.

If your license file does not include the license for the xPC
Target Embedded Option product, your only options are
BootFloppy, CDBoot, DOSLoader, and NetworkBoot. With
the xPC Target Embedded Option product licensed and
installed, you have the additional choice of Standalone.

EmbeddedOption Values are 'Disabled' and 'Enabled'. This property is
read only.

Note that the xPC Target Embedded Option product is
enabled only if you purchase an additional license.

The function setxpcenv works similarly to the set function of the
MATLAB Handle Graphics® system. Call the function setxpcenv with
an even number of arguments. The first argument of a pair is the
property name, and the second argument is the new property value
for this property.

Using the function setxpcenv without arguments returns a list of
allowed property values in the MATLAB window.

Examples List the current environment properties.

setxpcenv

Change the serial communication port of the host PC to COM2.

setxpcenv('RS232HostPort','COM2')

17-137

setxpcenv

See Also The xPC Target functions getxpcenv, updatexpcenv, and xpcbootdisk.
The procedures “Changing Environment Properties with xPC Target
Explorer” on page 6-3 and “Changing Environment Properties with a
Command-Line Interface for Default Target PCs” on page 6-7.

17-138

start (scope object)

Purpose Start execution of scope on target PC

Syntax MATLAB command line

start(scope_object_vector)
scope_object_vector.start
+scope_object_vector
start(getscope((target_object, signal_index_vector))

Target PC command line

startscope scope_index
startscope 'all'

Arguments target_object Name of a target object.
scope_object_vector Name of a single scope object, name of

vector of scope objects, list of scope object
names in vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

signal_index_vector Index for a single scope or list of scope
indices in vector form.

scope_index Single scope index.

Description Method for a scope object. Starts a scope on the target PC represented
by a scope object on the host PC. This method does not necessarily
start data acquisition, which depends on the trigger settings. Before
using this method, you must create a scope. To create a scope, use the
target object method addscope or add xPC Target scope blocks to your
Simulink model.

17-139

start (scope object)

Examples Start one scope with the scope object sc1.

sc1 = getscope(tg,1) or sc1 = tg.getscope(1)
start(sc1) or sc1.start or +sc1

or type

start(getscope(tg,1))

Start two scopes.

somescopes = getscope(tg,[1,2]) or somescopes=
tg.getscope([1,2])
start(somescopes) or somescopes.start

or type

sc1 = getscope(tg,1) or sc1 =tg.getscope(1)
sc2 = getscope(tg,2) or sc2 = tg.getscope(2)
start([sc1,sc2])

or type

start(getscope(tg,[1,2])

Start all scopes:

allscopes = getscope(tg) or allscopes = tg.getscope
start(allscopes) or allscopes.start or +allscopes

or type

start(getscope(tg)) or start(tg.getscope)

See Also The xPC Target target object methods getscope and stop (target
application object). The scope object method stop (scope
object).

17-140

start (target application object)

Purpose Start execution of target application on target PC

Syntax MATLAB command line

start(target_object)
target_object.start
+target_object

Target PC command line

start

Arguments target_object Name of a target object. The default name is tg.

Description Method of both target and scope objects. Starts execution of the target
application represented by the target object. Before using this method,
the target application must be created and loaded on the target PC. If a
target application is running, this command has no effect.

Examples Start the target application represented by the target object tg.

+tg
tg.start
start(tg)

See Also xPC Target target object methods stop (target application
object), load, and unload.

Scope object method stop (scope object).

17-141

stop (scope object)

Purpose Stop execution of scope on target PC

Syntax MATLAB command line

stop(scope_object_vector)
scope_object.stop
-scope_object
stop(getscope(target_object, signal_index_vector))

Target PC command line

stopscope scope_index
stopscope 'all'

Arguments target_object Name of a target object.
scope_object_vector Name of a single scope object, name of

vector of scope objects, list of scope object
names in a vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

signal_index_vector Index for a single scope or list of scope
indices in vector form.

scope_index Single scope index.

Description Method for scope objects. Stops the scopes represented by the scope
objects.

Examples Stop one scope represented by the scope object sc1.

stop(sc1) or sc1.stop or -sc1

Stop all scopes with a scope object vector allscopes created with the
command

17-142

stop (scope object)

allscopes = getscope(tg) or allscopes = tg.getscope.
stop(allscopes) or allscopes.stop or -allscopes

or type

stop(getscope(tg)) or stop(tg.getscope)

See Also The xPC Target target object methods getscope, stop (target
application object), and start (target application object).
The scope object method start (scope object).

17-143

stop (target application object)

Purpose Stop execution of target application on target PC

Syntax MATLAB command line

stop(target_object)
target_object.stop
-target_object

Target PC command line

stop

Arguments target_object Name of a target object.

Description Stops execution of the target application represented by the target
object. If the target application is stopped, this command has no effect.

Examples Stop the target application represented by the target object tg.

stop(tg) or tg.stop or -tg

See Also The xPC Target target object method start (target application
object). The scope object methods stop (scope object) and start
(scope object).

17-144

targetping

Purpose Test communication between host and target computers

Syntax MATLAB command line

targetping(target_object)
target_object.targetping

Arguments target_object Name of a target object.

Description Method of a target object. Use this method to ping a target PC from
the host PC. It returns either success or failed. If the xPC Target
kernel is loaded, running, and communication is working properly, this
function returns the value success.

This function works with both RS-232 and TCP/IP communication.

Examples Ping the communication between the host and the target object tg.

targetping(tg) or tg.targetping

See Also The xPC Target target object methods delete and xpctarget.xpc.

17-145

trigger

Purpose Software-trigger start of data acquisition for scope(s)

Syntax MATLAB command line

trigger(scope_object_vector) or scope_object_vector.trigger

Arguments scope_object_vector Name of a single scope object, name of a
vector of scope objects, list of scope object
names in a vector form [scope_object1,
scope_object2], or the target object
method getscope, which returns a
scope_object vector.

Description Method for a scope object. If the scope object property TriggerMode has
a value of 'software', this function triggers the scope represented by
the scope object to acquire the number of data points in the scope object
property NumSamples.

Note that only scopes with type host store data in the properties
scope_object.Time and scope_object.Data.

Examples Set a single scope to software trigger, trigger the acquisition of one set
of samples, and plot data.

sc1 = tg.addscope('host',1) or sc1=addscope(tg,'host',1)
sc1.triggermode = 'software'
tg.start, or start(tg), or +tg
sc1.start or start(sc1) or +sc1
sc1.trigger or trigger(sc1)
plot(sc1.time, sc1.data)
sc1.stop or stop(sc1) or -sc1
tg.stop or stop(tg) or -tg1

Set all scopes to software trigger and trigger to start.

allscopes = tg.getscopes

17-146

trigger

allscopes.triggermode = 'software'
allscopes.start or start(allscopes) or +allscopes
allscopes.trigger or trigger(allscopes)

17-147

unload

Purpose Remove current target application from target PC

Syntax MATLAB command line

unload(target_object)
target_object.unload

Arguments target_object Name of a target object that represents a target
application.

Description Method of a target object. The kernel goes into loader mode and is ready
to download new target application from the host PC.

Note If you are running in StandAlone mode, this command has no
effect. To unload and reload a new application, you must rebuild the
stand-alone application with the new application, then reboot the target
PC with the updated stand-alone application.

Examples Unload the target application represented by the target object tg.

unload(tg) or tg.unload

See Also xPC Target methods load and reboot.

17-148

updatexpcenv

Purpose Change current environment properties to new properties

Syntax MATLAB command line

updatexpcenv

Description Function to update environment properties. Call the function
updatexpcenv in the following order:

1 Enter new properties with the function setxpcenv.

2 Type updatexpcenv to change the current properties to match the
new properties.

3 Create a target boot floppy with the function xpcbootdisk.

See Also The xPC Target functions setxpcenv, getxpcenv, and xpcbootdisk.
The procedures “Changing Environment Properties with xPC Target
Explorer” on page 6-3 and “Changing Environment Properties with a
Command-Line Interface for Default Target PCs” on page 6-7.

17-149

xpc

Purpose Call target object constructor, xpctarget.xpc

See Also xpctarget.xpc

17-150

xpcbootdisk

Purpose Create xPC Target boot disk or DOS Loader files and confirm current
environment properties

Syntax MATLAB command line

xpcbootdisk

Description Function to create an xPC Target boot floppy, CD boot image, network
boot image, or DOS Loader files for the current xPC Target environment
that has been updated with the function updatexpcenv. Use the
setxpcenv function to set environment properties.

• Creating an xPC Target boot floppy consists of writing the correct
bootable kernel image onto the disk. You are asked to insert an
empty formatted floppy disk into the 3.5-inch disk drive. At the end,
a summary of the creation process is displayed.

• Creating an xPC Target CD boot image consists of creating the
correct bootable kernel image in a designated area. You can then
burn the files to a blank CD.

• Creating an xPC Target network boot image consists of running
xpcnetboot to start the network boot server process.

• Creating xPC Target DOS Loader files consists of creating the correct
files in a designated area. You can then copy the files to the target
PC flash disk.

If you update the environment, you need to update the target boot
floppy, CD boot image, network boot image, or DOS Loader files for the
new xPC Target environment with the function xpcbootdisk.

Examples To create a boot floppy disk, in the MATLAB window, type:

xpcbootdisk

See Also The xPC Target functions setxpcenv, getxpcenv, and updatexpcenv.

17-151

xpcbootdisk

The procedures “Changing Environment Properties with xPC Target
Explorer” on page 6-3 and “Changing Environment Properties with a
Command-Line Interface for Default Target PCs” on page 6-7.

17-152

xpcbytes2file

Purpose Generate file suitable for use by From File block

Syntax xpcbytes2file(filename, var1, ...,varn)

Arguments
filename Name of the data file from which the From File

block distributes data.
var1,...varn Column of data to be output to the model.

Description The xpcbytes2file function outputs one column of var1,..., varn at
every time step. All variables must have the same number of columns;
the number of rows and data types can differ.

Note You might have the data organized such that a row refers to a
single time step and not a column. In this case, pass to xpcbytes2file
the transpose of the variable. To optimize file writes, organize the data
in columns.

Examples In the following example, to use the From File block to output a variable
errorval (single precision, scalar) and velocity (double, width 3) at
every time step, you can generate the file with the command:

xpcbytes2file('myfile', errorval, velocity)

where errorval has class 'single' and dimensions [1 x N] and
velocity has class 'double' and dimensions [3 x N].

Set up the From File block to output

28 bytes
(1 * sizeof('single') + 3 * sizeof('double'))

at every sample time.

17-153

xpcexplr

Purpose Open xPC Target Explorer

Syntax MATLAB command line

xpcexplr

Description This graphical user interface (GUI) allows you to

• Manage an xPC Target system

• Enter and change environment properties

• Create an xPC Target boot disk

• Build, download, and run target applications

• Monitor signals

• Tune parameters

See Also The xPC Target functions setxpcenv, getxpcenv, updatexpcenv,
and xpcbootdisk. The procedures “Environment Properties for
Serial Communication” and “Environment Properties for Network
Communication”.

17-154

xpcnetboot

Purpose Create a kernel to boot target PC over dedicated network

Syntax MATLAB command line

xpcnetboot
xpcnetboot targetPCname

Arguments targetPCName Target PC name as identified in xPC Target
Explorer.

Description The xpcnetboot function creates an xPC Target kernel that a target PC
within the same network can boot.

This function also starts the following services as server processes:

• Bootstrap protocol (bootp) — xpcbootpserver.exe

• Trivial file transfer protocol (tftp) — xpctftpserver.exe

These processes respond to network boot requests from the target PC.

xpcnetboot creates an xPC Target kernel for the default target PC (as
identified in xPC Target Explorer).

xpcnetboot targetPCname creates an xPC Target kernel and waits
for a request from the target PC named targetPCname (as identified
in xPC Target Explorer).

Examples In the following example, xpcnetboot creates an xPC Target kernel and
waits for a request from the target PC, TargetPC1.

xpcnetboot TargetPC1

17-155

xpctarget.fs

Purpose Create xPC Target file system object

Syntax MATLAB command line

filesys_object = xpctarget.fs('mode', 'arg1', 'arg2')

Arguments filesys_object Variable name to reference the file system object.
mode Optionally, enter the communication mode:

TCPIP Specify TCP/IP connection with
target PC.

RS232 Specify RS-232 connection with
target PC.

arg1 Optionally, enter an argument based on the mode
value:
IP address If mode is 'TCPIP', enter the IP

address of the target PC.
COM port If mode is 'RS232', enter the host

COM port.
arg2 Optionally, enter an argument based on the mode

value:
Port If mode is 'TCPIP', enter the port

number for the target PC.
Baud rate If mode is 'RS232', enter the baud

rate for the connection between the
host and target PC.

Description Constructor of a file system object. The file system object represents the
file system on the target PC. You work with the file system by changing
the file system object using methods.

If you have one target PC object, or if you designate a target PC as the
default one in your system, use the syntax

17-156

xpctarget.fs

filesys_object=xpctarget.fs

If you have multiple target PCs in your system, or if you want to
identify a target PC with the file system object, use the following syntax
to create the additional file system objects.

filesys_object=xpctarget.fs('mode', 'arg1', 'arg2')

Examples In the following example, a file system object for a target PC with an
RS-232 connection is created.

fs1=xpctarget.fs('RS232','COM1','115200')

fs1 =
xpctarget.fs

Optionally, if you have an xpctarget.xpc object, you can construct an
xpctarget.fs object by passing the xpctarget.xpc object variable to
the xpctarget.fs constructor as an argument.

>> tg1=xpctarget.xpc('RS232','COM1','115200');
>> fs2=xpctarget.fs(tg1)

fs2 =

xpctarget.fs

17-157

xpctarget.ftp

Purpose Create xPC Target FTP object

Syntax MATLAB command line

file_object = xpctarget.ftp('mode', 'arg1', 'arg2')

Arguments file_objectVariable name to reference the FTP object.
mode Optionally, enter the communication mode:

TCPIP Specify TCP/IP connection with target
PC.

RS232 Specify RS-232 connection with target
PC.

arg1 Optionally, enter an argument based on the mode value:
IP address If mode is 'TCPIP', enter the IP address

of the target PC.
COM port If mode is 'RS232', enter the host COM

port.
arg2 Optionally, enter an argument based on the mode value:

Port If mode is 'TCPIP', enter the port
number for the target PC.

Baud rate If mode is 'RS232', enter the baud rate
for the connection between the host
and target PC.

Description Constructor of an FTP object. The FTP object represents the file on
the target PC. You work with the file by changing the file object using
methods.

If you have one target PC object, or if you designate a target PC as the
default one in your system, use the syntax

file_object=xpctarget.ftp

17-158

xpctarget.ftp

If you have multiple target PCs in your system, or if you want to
identify a target PC with the file object, use the following syntax to
create the additional file objects.

file_object=xpctarget.ftp('mode', 'arg1', 'arg2')

Examples In the following example, a file object for a target PC with an RS-232
connection is created.

f=xpctarget.ftp('RS232','COM1','115200')

f =
xpctarget.ftp

Optionally, if you have an xpctarget.xpc object, you can construct an
xpctarget.ftp object by passing the xpctarget.xpc object variable to
the xpctarget.ftp constructor as an argument.

>> tg1=xpctarget.xpc('RS232','COM1','115200');
>> f2=xpctarget.ftp(tg1)

f2 =

xpctarget.ftp

17-159

xpctarget.targets

Purpose Create container object to manage target PC environment collection
objects

Syntax MATLAB command line

env_collection_object = xpctarget.targets

Description Constructor target object collection environment container.
The environment container manages the environment object
(xpctarget.env) for a multitarget xPC Target system. (This is in
contrast to the setxpcenv and getxpcenv functions, which manage the
environment properties for the default target PC.) You work with the
environment objects by changing the environment properties using
methods.

Use the syntax

env_object = xpctarget.targets

Access properties of an env_collection_object
object with env_collection_object.propertyname,
env_collection_object.propertyname.propertyname, or with the
get (env collection object) and set (env collection object)
commands.

Method
Summary

Method Description

Add (env collection
object)

Add a new xPC Target environment
collection object.

getTargetNames (env
collection object)

Retrieve all xPC Target environment
collection object names.

Item (env collection
object)

Retrieve xPC Target environment
collection object.

17-160

xpctarget.targets

Method Description

makeDefault (env
collection object)

Set target PC environment collection
object as default.

Remove (env collection
object)

Remove an xPC Target environment
collection object.

Property
Summary

Property Description Writable

CCompiler Values are 'Watcom' and 'VisualC'. Yes
CompilerPath Value is a valid compiler root

directory. Enter the path where
you installed a Watcom C/C++
or Microsoft Visual Studio C/C++
compiler.

Yes

DefaultTarget Returns an xpctarget.env object
that references the default target PC
object environment.

No

FloppyDrive Allows you to set the 3.5-inch drive
letter to the one designated by your
target PC. By default, FloppyDrive
is set to a:. Set this property to b:
only if the target PC designates it.
As necessary, set this value before
creating a boot disk. Valid values are
'a:' and 'b:'.

Yes

NumTargets Returns the number of target PC
environment objects in the container.

No

Examples Create an environment container object. With this object, you can
manage the environment collection objects for all the targets in your
system.

17-161

xpctarget.targets

tgs=xpctarget.targets
tgs =
xpctarget.targetst = xpctarget.xpc

See Also xPC Target methods get (env collection object) and set (env
collection object)

17-162

xpctarget.xpc

Purpose Create target object representing target application

Syntax MATLAB command line

target_object = xpctarget.xpc('mode', 'arg1', 'arg2')
target_object=xpctarget.xpc('target_object_name')

Arguments target_object Variable name to reference the target object
mode Optionally, enter the communication mode

TCPIP Enable TCP/IP connection with
target PC.

RS232 Enable RS-232 connection with
target PC.

arg1 Optionally, enter an argument based on the
mode value:
IP
address

If mode is 'TCPIP', enter the IP
address of the target PC.

COM
port

If mode is 'RS232', enter the host
COM port.

arg2 Optionally, enter an argument based on the
mode value:
Port If mode is 'TCPIP', enter the port

number for the target PC.
Baud
rate

If mode is 'RS232', enter the baud
rate for the connection between the
host and target PC.

target_object_name Target object name as specified in the xPC
Target Explorer

17-163

xpctarget.xpc

Description Constructor of a target object. The target object represents the target
application and target PC. You make changes to the target application
by changing the target object using methods and properties.

If you have one target PC, or if you designate a target PC as the default
one in your system, use the syntax

target_object=xpctarget.xpc

If you have multiple target PCs in your system, use the following syntax
to create the additional target objects.

target_object=xpctarget.xpc('mode', 'arg1', 'arg2')

If you have a target PC object in the xPC Target Explorer, you can use
the following syntax to construct a corresponding target object from
the MATLAB Command Window.

target_object=xpctarget.xpc('target_object_name')

Examples Before you build a target application, you can check the connection
between your host and target computers by creating a target object,
then using the targetping method to check the connection.

tg = xpctarget.xpc
xPC Object

Connected = Yes
Application = loader

tg.targetping

ans =

success

If you have a second target computer for which you want to check the
connection, create a second target object. In the following example, the
connection with the second target computer is an RS-232 connection.

17-164

xpctarget.xpc

tg1=xpctarget.xpc('RS232','COM1','115200')

xPC Object
Connected = Yes
Application = loader

If you have an xPC Target Explorer target object, and you want to
construct a corresponding target object in the MATLAB Command
Window, use a command like the following:

target_object=xpctarget.xpc('TargetPC1')

See Also xPC Target methods get (target application object), set
(target application object), delete, and targetping.

17-165

xpctargetping

Purpose Test communication between host and target PCs

Syntax MATLAB command line

xpctargetping
xpctargetping('mode', 'arg1', 'arg2')

Arguments mode Optionally, enter the communication mode:
TCPIP Enable TCP/IP connection with

target PC.
RS232 Enable RS-232 connection with

target PC.
arg1 Optionally, enter an argument based on the

mode value:
IP
address

If mode is 'TCPIP', enter the IP
address of the target PC.

COM
port

If mode is 'RS232', enter the host
COM port.

arg2 Optionally, enter an argument based on the
mode value:
Port If mode is 'TCPIP', enter the port

number for the target PC.
Baud
rate

If mode is 'RS232', enter the baud
rate for the connection between the
host and target PC.

Description Pings the target PC from the host PC and returns either success or
failed. If you have one target PC, or if you designate a target PC as
the default one in your system, use the syntax

xpctargetping

17-166

xpctargetping

If you have multiple target PCs in your system, use the following syntax
to identify the target PC to ping.

xpctargetping('mode', 'arg1', 'arg2')

If the xPC Target kernel is loaded, running, and communication is
working properly, this function returns the value success.

This function works with both RS-232 and TCP/IP communication.

ans =
success

Examples Check for communication between the host PC and target PC.

xpctargetping

If you have a serial connection with the target PC you want to check,
use the following syntax.

xpctargetping('RS232', 'COM1', '115200')

See Also The xPC Target procedure “Testing and Troubleshooting the
Installation”

17-167

xpctargetspy

Purpose Open Real-Time xPC Target Spy window on host PC

Syntax MATLAB command line

xpctargetspy
xpctargetspy(target_object)
xpctargetspy('target_object_name')

Arguments target_object Variable name to reference the target object.
target_object_name Target object name as specified in the xPC

Target Explorer.

Description This graphical user interface (GUI) allows you to upload displayed
data from the target PC. By default, xpctargetspy opens a Real-Time
xPC Target Spy window for the target object, tg. If you have multiple
target PCs in your system, you can call the xpctargetspy function for a
particular target object, target_object.

If you have one target PC, or if you designate a target PC as the default
one in your system, use the syntax

xpctargetspy

If you have multiple target PCs in your system, use xpctarget.xpc to
create the additional target object first.

target_object=xpctarget.xpc('mode', 'arg1', 'arg2')

Then, use the following syntax.

xpctargetspy(target_object)

If you have a target PC object in the xPC Target Explorer, you can use
the following syntax.

target_object=xpctarget.xpc('target_object_name')

17-168

xpctargetspy

The behavior of this function depends on the value for the environment
property TargetScope:

• If TargetScope is enabled, a single graphics screen is uploaded. The
screen is not continually updated because of a higher data volume
when a target graphics card is in VGA mode. You must explicitly
request an update. To manually update the host screen with another
target screen, move the pointer into the Real-Time xPC Target Spy
window and right-click to select Update xPC Target Spy.

• If TargetScope is disabled, text output is transferred once every
second to the host and displayed in the window.

Examples To open the Real-Time xPC Target Spy window for a default target PC,
tg, in the MATLAB window, type

xpctargetspy

To open the Real-Time xPC Target Spy window for a target PC, tg1, in
the MATLAB window, type

xpctargetspy(tg1)

If you have multiple target PCs in your system, use xpctarget.xpc to
create the additional target object, tg2, first.

tg2=xpctarget.xpc('RS232', 'COM1', '115200')

Then, use the following syntax.

xpctargetspy(tg2)

17-169

xpctest

Purpose Test xPC Target installation

Syntax MATLAB command line

xpctest
xpctest('target_name')
xpctest('-noreboot')
xpctest('noreboot')
xpctest('target_name', 'noreboot')
xpctest('target_name', '-noreboot')

Arguments 'target_name' Name of target PC to test.
'noreboot' Only one possible option. Skips the reboot test.

Use this option if the target hardware does not
support software rebooting. Value is 'noreboot'
or '-noreboot'.

Description xpctest is a series of xPC Target tests to check the correct functioning
of the following xPC Target tasks:

• Initiate communication between the host and target computers.

• Reboot the target PC to reset the target environment.

• Build a target application on the host PC.

• Download a target application to the target PC.

• Check communication between the host and target computers using
commands.

• Execute a target application.

• Compare the results of a simulation and the target application run.

xpctest('noreboot') or xpctest('-noreboot') skips the reboot test
on the default target PC. Use this option if target hardware does not
support software rebooting.

17-170

xpctest

xpctest('target_name') runs the tests on the target PC identified
by 'target_name'.

xpctest('target_name', 'reboot') or xpctest('target_name',
'-reboot') runs the tests on the target PC identified by
'target_name', but skips the reboot test.

Examples If the target hardware does not support software rebooting, or to skip
the reboot test, in the MATLAB window, type

xpctest('-noreboot')

To run xpctest on a specified target PC, for example TargetPC1, type

xpctest('TargetPC1')

See Also Procedures “Testing and Troubleshooting the Installation” and “Test 1,
Ping Target System Standard Ping”

17-171

xpcwwwenable

Purpose Disconnect target PC from current client application

Syntax MATLAB command line

xpcwwwenable
xpcwwwenable('target_obj_name')

Description Use this function to disconnect the target application from the MATLAB
interface before you connect to the Web browser. You can also use this
function to connect to the MATLAB interface after using a Web browser,
or to switch to another Web browser.

xpcwwwenable('target_obj_name') disconnects the target application
on target_obj_name, for example 'TargetPC1', from the MATLAB
interface.

17-172

Index

IndexA
application parameters

saving and reloading 3-73
applications

with DOSLoader mode 4-11
with Standalone mode 5-11

B
block parameters

parameter tuning with external mode 3-70

C
changing environment properties

CLI 6-7
xPC Target Explorer 6-3

changing parameters
using target object properties 3-67
xPC Target commands 3-67

command-line interface
aliasing 15-8
scope object 1-3
scope object methods 15-5
scope object property commands 15-6
target object methods 15-2
target object property commands 15-3
target objects 1-2
target PC 8-1

CPU overloads
troubleshooting 14-20

creating application with DOSLoader mode 4-11
creating application with Standalone mode 5-11

D
data logging

with MATLAB 3-57
with Web browser 3-61

DOSLoader mode 4-2
copying kernel 4-9
creating target application 4-11
using xpcbootdisk 4-11

E
embedded option

DOSLoader 4-2
introduction 5-2
Standalone 5-3
updating xPC Target environment 5-7

entering environment properties
xPC Target Explorer 6-3

environment collection objects
target PC 7-2

environment properties
and Standalone mode 5-11
changing through CLI 6-7
changing through xPC Target Explorer 6-3
list 6-2
updating through CLI 6-7
updating through xPC Target Explorer 6-3

external mode
parameter tuning 3-70

F
file system objects

methods 16-8
xpctarget.fs introduction 9-4

file systems
introduction 9-2
target PC 9-2

Fortran
S- function wrapper 13-8
wrapper S-function 13-8
xPC Target 13-2

Index-1

Index

FreeDOS
copying kernel 4-9
copying kernel/application 5-12

FTP objects
xpctarget.ftp introduction 9-4

functions 3-36
changing parameters 3-67
signal logging 3-57
signal monitoring 3-9

G
getting list of environment properties 6-2
getting parameter properties 3-67
getting signal properties 3-9

H
host scope viewer

xPC Target Explorer 3-30

I
inlined parameters

tuning with MATLAB 3-81
tuning with xPC Target Explorer 3-79

interrupt mode
introduction 12-1

K
kernel

copying to flash memory 4-9
with DOSLoader mode 4-9
with Standalone mode 5-11

L
list

environment properties 6-2

M
MATLAB 3-36

parameter tuning 3-67
signal logging 3-57
signal monitoring 3-9

methods
file system object 16-8

monitoring signals
referenced models 3-9
xPC Target Explorer 3-2

monitoring Stateflow states
MATLAB interface 3-10

P
parameter tuning 3-70

overview 3-63
Web browser 3-73
with MATLAB 3-67
with Simulink external mode 3-70

parameters
changing with commands 3-67
inlining 3-76
tuning with external mode 3-70
tuning with MATLAB 3-67
tuning with Web browser 3-73

polling mode
introduction 12-1
setting up 12-7

properties
changing environment 6-7
environment list 6-2
updating environment 6-7

R
readxpcfile 9-12
referenced models

monitoring signals 3-9

Index-2

Index

S
saving and reloading application parameters

with MATLAB 3-73
saving and reloading application sessions 3-34
scope objects

command-line interface 1-3
commands 1-3
list of properties with files 3-42
list of properties with targets 3-38
methods, see commands 1-3
properties 1-3

scopes
creating 3-16
software triggering 3-28
stopping 3-27

Setup window
using 6-2

signal logging
overview 3-54
with MATLAB 3-57
with Web browser 3-61
xPC Target Explorer 3-54

signal monitoring
with MATLAB 3-9

signal tracing
with MATLAB 3-36
with Simulink external mode 3-48
with Web browser 3-52
with xPC Target scope blocks 3-46

signals
adding 3-23

Simulink external mode
parameter tuning 3-70
signal tracing 3-48

Standalone mode 5-3
copying kernel/target application 5-12
creating kernel/application 5-11
updating environment properties 5-11

Stateflow states
monitoring 3-10

T
target application

copying with Standalone mode 5-12
saving and reloading sessions 3-34
with DOSLoader mode 4-11

target object properties
scopes of type file 3-41

target objects
changing parameters 3-67
command-line interface 1-2
commands 1-2
list of properties with files 3-41
methods, see commands 1-2
parameter properties 3-67
properties 1-2
signal properties 3-9

target PC
command-line interface 8-1
copying files with xpctarget.ftp 9-8
directory listings with xpctarget.ftp 9-7
disk information retrieval with

xpctarget.fs 9-16
environment collection objects 7-2
file content retrieval with

xpctarget.fs 9-11
file conversion with xpctarget.fs 9-12
file information retrieval with

xpctarget.fs 9-15
file removal with xpctarget.fs 9-14
file retrieval with xpctarget.ftp 9-7
list of open files with xpctarget.fs 9-14
manipulating scope object properties 8-5
manipulating scope objects 8-4
manipulating target object properties 8-3
using target application methods 8-2

Index-3

Index

task execution time (TET)
average 17-48
definition 3-60
logging 17-53
maximum 17-50
minimum 17-50
with the getlog function 17-56

TET. See task execution time
tracing signals

xPC Target Explorer 3-15

troubleshooting
accessing documentation 14-34
advanced xPC Target 14-19
BIOS settings 14-3
boot disk 14-33
boot image 14-33
CAN boards 14-18
changed stop time 14-30
communication issues 14-6
connection lost 14-7
CPU Overload 14-20
CPU overloads 14-20
custom device drivers 14-28
device drivers 14-28
different sample times 14-26
Error -10 14-28
file system disabled 14-30
general I/O 14-19
general xPC Target hints and tips 14-33
getxpcpci 14-25
host PC MATLAB halted 14-4
installation, configuration, and tests 14-10
invalid file ID 14-28
lost connection 14-7
models with CAN boards 14-18
new releases 14-33
PCI board slot and bus 14-25
PCI boards 14-25
sample time differences 14-26
sample times 14-26
stand-alone xPC Target application 14-29
stop time change 14-30
tagging virtual blocks 14-29
target PC halted 14-5
target PC monitor view 14-20
updated xPC Target releases 14-33
virtual block tagging 14-29
xPC Target PC unable to boot 14-4
xpctargetspy 14-20
xpctest 14-10

Index-4

Index

tuning parameters
xPC Target Explorer 3-64

U
updating environment properties through

CLI 6-7
updating environment properties through xPC

Target Explorer 6-3
using setup window 6-2
using xPC Target setup window 6-2

W
Web browser 3-52

connecting 11-2
parameter tuning 3-73
signal logging 3-61

X
xPC Target

troubleshooting 14-1
Web browser 11-1

xPC Target environment
updating 4-4

xPC Target Explorer
adding signals 3-23
configuring the host scope viewer 3-30
creating scopes 3-16
logging 3-54
monitoring signals 3-2
stopping scopes 3-27
tracing signals 3-15
tuning parameters 3-64

xPC Target scope blocks 3-46
xPC Target Setup window 6-2
xpctarget.fs

creation 9-4
introduction 9-2
methods 16-8
overview 9-9

xpctarget.fsbase
methods 16-8

xpctarget.ftp
creation 9-4
introduction 9-2
methods 16-8
overview 9-5

xpctcp2ser 11-5

Index-5

	toc
	Target and Scope Objects
	Target Objects
	What Is a Target Object?

	Scope Objects
	What Is a Scope Object?
	Scope Object Types

	Targets and Scopes in the MATLAB Interface
	Working with Target Objects
	Accessing Help for Target Objects
	Creating Target Objects
	Deleting Target Objects
	Displaying Target Object Properties
	Setting Target Object Properties from the Host PC
	Getting the Value of a Target Object Property
	Using the Method Syntax with Target Objects

	Working with Scope Objects
	Accessing Help for Scope Objects
	Displaying Scope Object Properties for a Single Scope
	Displaying Scope Object Properties for All Scopes
	Setting the Value of a Scope Property
	Getting the Value of a Scope Property
	Using the Method Syntax with Scope Objects
	Acquiring Signal Data with Scopes of Type File
	Advanced Data Acquisition Topics
	Triggering One Scope with Another Scope to Acquire Data
	Acquiring Gap-Free Data Using Two Scopes

	Signals and Parameters
	Monitoring Signals
	Introduction
	Signal Monitoring with xPC Target Explorer
	Monitoring Signals from Referenced Models

	Signal Monitoring with the MATLAB Interface
	Monitoring Stateflow States
	Monitoring Stateflow States with xPC Target Explorer
	Monitoring Stateflow States with the MATLAB Interface

	Signal Tracing
	Introduction
	Signal Tracing with xPC Target Explorer
	Creating Scopes
	Adding Signals to Scopes
	Stopping Scopes
	Software Triggering Scopes
	Configuring the Host Scope Viewer
	Copying Files to the Host PC
	Exporting Data from Scopes of Type File to MATLAB Workspace
	Saving and Reloading xPC Target Application Sessions
	Deleting Files from the Target PC

	Signal Tracing with the MATLAB Interface
	Signal Tracing with the MATLAB Interface and Scopes of Type Targ
	Signal Tracing with the MATLAB Interface and Scopes of Type File

	Signal Tracing with xPC Target Scope Blocks
	Using xPC Target Scope Blocks from Referenced Models
	Scope of Type Host
	Scope of Type Target
	Scope of Type File

	Signal Tracing with Simulink External Mode
	Limitations
	Before You Start
	Signal Tracing with External Mode Example

	Signal Tracing with a Web Browser

	Signal Logging
	Introduction
	Signal Logging with xPC Target Explorer
	Signal Logging in the MATLAB Interface
	Signal Logging with a Web Browser

	Parameter Tuning and Inlining Parameters
	Introduction
	Parameter Tuning with xPC Target Explorer
	Parameter Tuning with the MATLAB Interface
	Resetting Target Application Parameters to Previous Values

	Parameter Tuning with Simulink External Mode
	Parameter Tuning with a Web Browser
	Saving and Reloading Application Parameters with the MATLAB Inte
	Saving the Current Set of Target Application Parameters
	Loading Saved Parameters to a Target Application
	Listing the Values of the Parameters Stored in a File

	Inlined Parameters
	Tuning Inlined Parameters with xPC Target Explorer
	Tuning Inlined Parameters with the MATLAB Interface

	Booting from a DOS Device
	DOSLoader Mode
	Introduction
	DOSLoader Mode Overview
	Restrictions
	Updating the xPC Target Environment
	Creating a DOS System Disk

	DOSLoader Target Setup
	Introduction
	Updating Environment Properties and Creating a Boot Disk
	Copying the Kernel to Flash Memory
	Creating a Target Application for DOSLoader Mode
	Creating DOSLoader Files with a Command-Line Interface

	Embedded Option
	Introduction
	xPC Target Embedded Option Modes
	Introduction
	Standalone Mode Overview
	Restrictions

	Embedded Option Setup
	Updating the xPC Target Environment
	Creating a DOS System Disk

	Stand-Alone Target Setup
	Before You Start
	Updating Environment Properties
	Creating a Kernel/Target Application
	Copying the Kernel/Target Application to the Target PC Flash Dis

	Software Environment and Demos
	Using Environment Properties and Functions
	Introduction
	Getting a List of Environment Properties for Default Target PCs
	Changing Environment Properties with xPC Target Explorer
	Configuring Environment Parameters for Target PCs

	Changing Environment Properties with a Command-Line Interface fo

	xPC Target Demos
	Introduction
	To Locate or Edit a Demo Script

	Working with Target PC Environments
	Target Environment Command-Line Interface
	Creating Target PC Environment Object Containers
	Displaying Target PC Environment Object Property Values
	Setting Target PC Environment Collection Object Properties
	Adding Target PC Environment Collection Objects
	Removing Target PC Environment Collection Objects
	Getting Target PC Environment Object Names
	Changing Target PC Environment Object Defaults
	Working with Particular Target PC Object Environments

	Using the Target PC Command-Line Interface
	Target PC Command-Line Interface
	Introduction
	Using Target Application Methods on the Target PC
	Manipulating Target Object Properties from the Target PC
	Manipulating Scope Objects from the Target PC
	Manipulating Scope Object Properties from the Target PC
	Aliasing with Variable Commands on the Target PC

	Working with Target PC Files and File Systems
	Introduction
	FTP and File System Objects
	Using xpctarget.ftp Objects
	Overview
	Accessing Files on a Specific Target PC
	Listing the Contents of the Target PC Directory
	Retrieving a File from the Target PC to the Host PC
	Copying a File from the Host PC to the Target PC

	Using xpctarget.fs Objects
	Overview
	Accessing File Systems from a Specific Target PC
	Retrieving the Contents of a File from the Target PC to the Host
	Converting xPC Target File Format Content to Double Precision Da

	Removing a File from the Target PC
	Getting a List of Open Files on the Target PC
	Getting Information about a File on the Target PC
	Getting Information about a Disk on the Target PC

	Graphical User Interfaces
	xPC Target Interface Blocks to Simulink Models
	Introduction
	Simulink User Interface Model
	Creating a Custom Graphical Interface
	To xPC Target Block
	From xPC Target Block
	Creating a Target Application Model
	Marking Block Parameters
	Marking Block Signals

	xPC Target Web Browser Interface
	Web Browser Interface
	Introduction
	Connecting the Web Interface Through TCP/IP
	Connecting the Web Interface Through RS-232
	Syntax for the xpctcp2ser Command

	Using the Main Pane
	Changing WWW Properties
	Viewing Signals with a Web Browser
	Viewing Parameters with a Web Browser
	Changing Access Levels to the Web Browser

	Interrupts Versus Polling
	Polling Mode
	Introduction
	xPC Target Kernel Polling Mode
	Interrupt Mode
	Latencies Introduced by Interrupt Mode

	Polling Mode
	Setting the Polling Mode
	Restrictions Introduced by Polling Mode
	Host-Target Communication Is Not Available During the Execution
	Target Screen Does Not Update During the Execution of the Target
	Session Time Does Not Advance During the Execution of the Target
	The Only Rapid-Prototyping Feature Available Is Data Logging
	Multirate Simulink Models Cannot Be Executed in Multitasking Mod
	I/O Drivers Using Kernel Timing Information Cannot Be Used Withi

	Controlling the Target Application
	Polling Mode Performance

	Incorporating Fortran Code into the xPC Target Environment
	Before You Start
	Introduction
	Simulink Demos Directory
	Prerequisites
	Steps to Incorporate Fortran in the Simulink Software for xPC Ta

	Step-by-Step Example of Fortran and xPC Target
	In This Example
	Creating an xPC Target Atmosphere Model for Fortran
	Compiling Fortran Files
	Creating a C-MEX Wrapper S-Function
	Compiling and Linking the Wrapper S-Function
	Validating the Fortran Code and Wrapper S-Function
	Preparing the Model for the xPC Target Application Build
	Building and Running the xPC Target Application

	Troubleshooting
	Overview
	BIOS Settings
	Booting Issues
	Is Your Host PC MATLAB Interface Halted?
	Is Your Target PC Unable to Boot?
	Is the Target PC Halted?

	Communications
	Is There Communication Between Your PCs?
	Why Does the xPC Target System Lose Connection with the Host PC
	xPC Target I/O Boards with Slow Initialization Times
	xPC Target Driver Software Issues

	How Can I Diagnose Network Problems with the xPC Target System?

	Installation, Configuration, and Build Troubleshooting
	Troubleshooting xpctest Results
	xpctest: Test 1 Fails
	xpctest: Test 2 Fails
	xpctest: Test 3 Fails
	xpctest: Test 4 Fails
	xpctest: Test 5 Fails
	xpctest: Test 6 Fails
	xpctest: Test 7 Fails
	xpctest: Test 8 Fails

	Troubleshooting Build Issues
	Why Is an Error Received While Downloading to the Target PC, but
	How Can I Build a Model That Contains a CAN Board?
	Why Do I Get Target Ping Failures or the MATLAB Interface Freeze

	General xPC Target Troubleshooting
	General I/O Troubleshooting Guidelines
	Can I View the Contents of the Target PC Display on the Host PC?
	Why Do Attempts to Run My Model Cause CPU Overload Messages on t
	Dealing with Small Model Sample Times
	Target PC BIOS
	System Management Interrupts
	Allow CPU Overloads
	Other Things to Try

	How Can I Obtain PCI Board Information for My xPC Target System?
	What Sample Time Can I Expect from the xPC Target Software?
	Why Is My Requested xPC Target Sample Time Different from the Me
	Why Did I Get Error -10: Invalid File ID on the Target PC?
	Can I Write Custom xPC Target Device Drivers?
	Can I Create a Stand-Alone xPC Target Application to Interact wi
	Can Signal Outputs from Virtual Blocks Be Tagged?
	Why Has the Stop Time Changed?
	Why Do I Get a File System Disabled Error?
	Can the Target PC Hard Drive Contain Multiple Partitions?
	Why Does the getparamid Function Return Nothing?
	How Do I Handle Register Rollover for xPC Target Encoder Blocks?

	Getting Updated xPC Target Releases and Help
	How to Get Updated xPC Target Releases
	Are You Working with a New xPC Target Release?
	Refer to the MathWorks Support Web Site
	Refer to the Documentation

	Target PC Command-Line Interface Reference
	Target PC Commands
	Introduction
	Target Object Methods
	Target Object Property Commands
	Scope Object Methods
	Scope Object Property Commands
	Aliasing with Variable Commands

	Function Reference
	Software Environment
	GUI
	Test
	Target Application Objects
	Scope Objects
	File and File System Objects
	Directories
	FTP
	File System

	xPC Target Environment Collection Object
	xPC Target Utilities

	Functions
	Index

